Matches in SemOpenAlex for { <https://semopenalex.org/work/W3123883114> ?p ?o ?g. }
- W3123883114 endingPage "545" @default.
- W3123883114 startingPage "525" @default.
- W3123883114 abstract "An approximation model based on convolutional neural networks (CNNs) is proposed for flow field predictions. The CNN is used to predict the velocity and pressure field in unseen flow conditions and geometries given the pixelated shape of the object. In particular, we consider Reynolds Averaged Navier-Stokes (RANS) flow solutions over airfoil shapes. The CNN can automatically detect essential features with minimal human supervision and shown to effectively estimate the velocity and pressure field orders of magnitude faster than the RANS solver, making it possible to study the impact of the airfoil shape and operating conditions on the aerodynamic forces and the flow field in near-real time. The use of specific convolution operations, parameter sharing, and robustness to noise are shown to enhance the predictive capabilities of CNN. We explore the network architecture and its effectiveness in predicting the flow field for different airfoil shapes, angles of attack, and Reynolds numbers." @default.
- W3123883114 created "2021-02-01" @default.
- W3123883114 creator A5006902954 @default.
- W3123883114 creator A5035881605 @default.
- W3123883114 creator A5050238247 @default.
- W3123883114 creator A5074526331 @default.
- W3123883114 creator A5081411969 @default.
- W3123883114 date "2019-06-12" @default.
- W3123883114 modified "2023-10-10" @default.
- W3123883114 title "Prediction of aerodynamic flow fields using convolutional neural networks" @default.
- W3123883114 cites W1548396538 @default.
- W3123883114 cites W1922658220 @default.
- W3123883114 cites W1969204979 @default.
- W3123883114 cites W1977758817 @default.
- W3123883114 cites W1982999370 @default.
- W3123883114 cites W1999244633 @default.
- W3123883114 cites W2007082981 @default.
- W3123883114 cites W2049391017 @default.
- W3123883114 cites W2076063813 @default.
- W3123883114 cites W2097615965 @default.
- W3123883114 cites W2108556791 @default.
- W3123883114 cites W2112548197 @default.
- W3123883114 cites W2112796928 @default.
- W3123883114 cites W2113543786 @default.
- W3123883114 cites W2125680029 @default.
- W3123883114 cites W2126171617 @default.
- W3123883114 cites W2133433238 @default.
- W3123883114 cites W2165414070 @default.
- W3123883114 cites W2172246201 @default.
- W3123883114 cites W2239054045 @default.
- W3123883114 cites W2267347098 @default.
- W3123883114 cites W2319329301 @default.
- W3123883114 cites W2319782185 @default.
- W3123883114 cites W2515505748 @default.
- W3123883114 cites W2745110207 @default.
- W3123883114 cites W2782436336 @default.
- W3123883114 cites W2785047343 @default.
- W3123883114 cites W2795982117 @default.
- W3123883114 cites W2899283552 @default.
- W3123883114 cites W2998115525 @default.
- W3123883114 cites W4231109964 @default.
- W3123883114 doi "https://doi.org/10.1007/s00466-019-01740-0" @default.
- W3123883114 hasPublicationYear "2019" @default.
- W3123883114 type Work @default.
- W3123883114 sameAs 3123883114 @default.
- W3123883114 citedByCount "265" @default.
- W3123883114 countsByYear W31238831142019 @default.
- W3123883114 countsByYear W31238831142020 @default.
- W3123883114 countsByYear W31238831142021 @default.
- W3123883114 countsByYear W31238831142022 @default.
- W3123883114 countsByYear W31238831142023 @default.
- W3123883114 crossrefType "journal-article" @default.
- W3123883114 hasAuthorship W3123883114A5006902954 @default.
- W3123883114 hasAuthorship W3123883114A5035881605 @default.
- W3123883114 hasAuthorship W3123883114A5050238247 @default.
- W3123883114 hasAuthorship W3123883114A5074526331 @default.
- W3123883114 hasAuthorship W3123883114A5081411969 @default.
- W3123883114 hasBestOaLocation W31238831142 @default.
- W3123883114 hasConcept C104317684 @default.
- W3123883114 hasConcept C112124176 @default.
- W3123883114 hasConcept C11413529 @default.
- W3123883114 hasConcept C121332964 @default.
- W3123883114 hasConcept C13393347 @default.
- W3123883114 hasConcept C154945302 @default.
- W3123883114 hasConcept C1633027 @default.
- W3123883114 hasConcept C182748727 @default.
- W3123883114 hasConcept C185592680 @default.
- W3123883114 hasConcept C196558001 @default.
- W3123883114 hasConcept C199360897 @default.
- W3123883114 hasConcept C2524010 @default.
- W3123883114 hasConcept C2778770139 @default.
- W3123883114 hasConcept C32526432 @default.
- W3123883114 hasConcept C33923547 @default.
- W3123883114 hasConcept C38349280 @default.
- W3123883114 hasConcept C41008148 @default.
- W3123883114 hasConcept C55493867 @default.
- W3123883114 hasConcept C57879066 @default.
- W3123883114 hasConcept C63479239 @default.
- W3123883114 hasConcept C81363708 @default.
- W3123883114 hasConceptScore W3123883114C104317684 @default.
- W3123883114 hasConceptScore W3123883114C112124176 @default.
- W3123883114 hasConceptScore W3123883114C11413529 @default.
- W3123883114 hasConceptScore W3123883114C121332964 @default.
- W3123883114 hasConceptScore W3123883114C13393347 @default.
- W3123883114 hasConceptScore W3123883114C154945302 @default.
- W3123883114 hasConceptScore W3123883114C1633027 @default.
- W3123883114 hasConceptScore W3123883114C182748727 @default.
- W3123883114 hasConceptScore W3123883114C185592680 @default.
- W3123883114 hasConceptScore W3123883114C196558001 @default.
- W3123883114 hasConceptScore W3123883114C199360897 @default.
- W3123883114 hasConceptScore W3123883114C2524010 @default.
- W3123883114 hasConceptScore W3123883114C2778770139 @default.
- W3123883114 hasConceptScore W3123883114C32526432 @default.
- W3123883114 hasConceptScore W3123883114C33923547 @default.
- W3123883114 hasConceptScore W3123883114C38349280 @default.
- W3123883114 hasConceptScore W3123883114C41008148 @default.
- W3123883114 hasConceptScore W3123883114C55493867 @default.
- W3123883114 hasConceptScore W3123883114C57879066 @default.