Matches in SemOpenAlex for { <https://semopenalex.org/work/W3123909522> ?p ?o ?g. }
- W3123909522 endingPage "117921" @default.
- W3123909522 startingPage "117921" @default.
- W3123909522 abstract "Traffic forecasting is important for the success of intelligent transportation systems. Deep learning models, including convolution neural networks and recurrent neural networks, have been extensively applied in traffic forecasting problems to model spatial and temporal dependencies. In recent years, to model the graph structures in transportation systems as well as contextual information, graph neural networks have been introduced and have achieved state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of research using different graph neural networks, e.g. graph convolutional and graph attention networks, in various traffic forecasting problems, e.g. road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, and demand forecasting in ride-hailing platforms. We also present a comprehensive list of open data and source codes for each problem and identify future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public GitHub repository where the latest papers, open data, and source codes will be updated." @default.
- W3123909522 created "2021-02-01" @default.
- W3123909522 creator A5048010881 @default.
- W3123909522 creator A5077021604 @default.
- W3123909522 date "2022-11-01" @default.
- W3123909522 modified "2023-10-11" @default.
- W3123909522 title "Graph neural network for traffic forecasting: A survey" @default.
- W3123909522 cites W2031674781 @default.
- W3123909522 cites W2116341502 @default.
- W3123909522 cites W2528639018 @default.
- W3123909522 cites W2772724270 @default.
- W3123909522 cites W2793820729 @default.
- W3123909522 cites W2809366716 @default.
- W3123909522 cites W2884738862 @default.
- W3123909522 cites W2899619587 @default.
- W3123909522 cites W2903871660 @default.
- W3123909522 cites W2904449562 @default.
- W3123909522 cites W2904832339 @default.
- W3123909522 cites W2914716043 @default.
- W3123909522 cites W2935726879 @default.
- W3123909522 cites W2941717697 @default.
- W3123909522 cites W2945214738 @default.
- W3123909522 cites W2947812485 @default.
- W3123909522 cites W2949732208 @default.
- W3123909522 cites W2950817888 @default.
- W3123909522 cites W2951927893 @default.
- W3123909522 cites W2966493540 @default.
- W3123909522 cites W2969279223 @default.
- W3123909522 cites W2973000317 @default.
- W3123909522 cites W2974357643 @default.
- W3123909522 cites W2979481854 @default.
- W3123909522 cites W2981104679 @default.
- W3123909522 cites W2983982218 @default.
- W3123909522 cites W2989567700 @default.
- W3123909522 cites W2993438196 @default.
- W3123909522 cites W2996847713 @default.
- W3123909522 cites W2997311100 @default.
- W3123909522 cites W2997513934 @default.
- W3123909522 cites W2997643818 @default.
- W3123909522 cites W2997848713 @default.
- W3123909522 cites W2998436408 @default.
- W3123909522 cites W2998559444 @default.
- W3123909522 cites W3000301417 @default.
- W3123909522 cites W3001437801 @default.
- W3123909522 cites W3001909761 @default.
- W3123909522 cites W3003862857 @default.
- W3123909522 cites W3005888097 @default.
- W3123909522 cites W3006854884 @default.
- W3123909522 cites W3008579601 @default.
- W3123909522 cites W3011787660 @default.
- W3123909522 cites W3012685314 @default.
- W3123909522 cites W3017243617 @default.
- W3123909522 cites W3021626758 @default.
- W3123909522 cites W3025175085 @default.
- W3123909522 cites W3026164661 @default.
- W3123909522 cites W3031609778 @default.
- W3123909522 cites W3031632615 @default.
- W3123909522 cites W3032119851 @default.
- W3123909522 cites W3034005731 @default.
- W3123909522 cites W3034294191 @default.
- W3123909522 cites W3034749137 @default.
- W3123909522 cites W3034944009 @default.
- W3123909522 cites W3040628978 @default.
- W3123909522 cites W3044144773 @default.
- W3123909522 cites W3045642713 @default.
- W3123909522 cites W3049596687 @default.
- W3123909522 cites W3049690032 @default.
- W3123909522 cites W3080284469 @default.
- W3123909522 cites W3081002782 @default.
- W3123909522 cites W3083228182 @default.
- W3123909522 cites W3087523994 @default.
- W3123909522 cites W3088452585 @default.
- W3123909522 cites W3091641260 @default.
- W3123909522 cites W3092713078 @default.
- W3123909522 cites W3093639344 @default.
- W3123909522 cites W3093665100 @default.
- W3123909522 cites W3093761440 @default.
- W3123909522 cites W3093767246 @default.
- W3123909522 cites W3094009742 @default.
- W3123909522 cites W3094231942 @default.
- W3123909522 cites W3094246578 @default.
- W3123909522 cites W3094588037 @default.
- W3123909522 cites W3095979891 @default.
- W3123909522 cites W3099531345 @default.
- W3123909522 cites W3100410054 @default.
- W3123909522 cites W3105138772 @default.
- W3123909522 cites W3109710535 @default.
- W3123909522 cites W3110353846 @default.
- W3123909522 cites W3129664946 @default.
- W3123909522 cites W3133663379 @default.
- W3123909522 cites W3151697167 @default.
- W3123909522 cites W3152893301 @default.
- W3123909522 cites W3172408309 @default.
- W3123909522 cites W3174022889 @default.
- W3123909522 cites W3176075655 @default.
- W3123909522 cites W3179429918 @default.
- W3123909522 cites W4312262053 @default.
- W3123909522 doi "https://doi.org/10.1016/j.eswa.2022.117921" @default.