Matches in SemOpenAlex for { <https://semopenalex.org/work/W3123938468> ?p ?o ?g. }
- W3123938468 abstract "Abstract Automatic detection of emotions in textual data masses provides priceless opportunities for researchers and also it is inevitable for practitioners. The unfavorable factors involved in text data cause ambiguity and adversely affect the performances of emotion classifiers. Although deep learning approaches spark off significantly successive results, the obtained performances of the classifiers in the literature are commonly evaluated as the overall accuracy. This incomplete evaluation ignores inner class performance and overall accuracy can behave as a hopeful evaluator. In this study, we employed deep learning and meta‐heuristic optimization methods together in order to resolve the ambiguity issue. Moreover, the decision mechanism of a conventional deep learning model is equipped with optimal emotion vectors obtained by optimization processes for each emotion class. Experimental results show that the proposed approach improves the inner class performance by maintaining the overall accuracy scores." @default.
- W3123938468 created "2021-02-01" @default.
- W3123938468 creator A5003365757 @default.
- W3123938468 creator A5032544861 @default.
- W3123938468 creator A5087050752 @default.
- W3123938468 date "2021-01-25" @default.
- W3123938468 modified "2023-10-18" @default.
- W3123938468 title "An emotion analysis scheme based on Gray Wolf optimization and deep learning" @default.
- W3123938468 cites W1513398909 @default.
- W3123938468 cites W1569507287 @default.
- W3123938468 cites W1579299488 @default.
- W3123938468 cites W1966797434 @default.
- W3123938468 cites W2000135657 @default.
- W3123938468 cites W2001979953 @default.
- W3123938468 cites W2020111801 @default.
- W3123938468 cites W2050730017 @default.
- W3123938468 cites W2056695536 @default.
- W3123938468 cites W2061438946 @default.
- W3123938468 cites W2077215180 @default.
- W3123938468 cites W2079521622 @default.
- W3123938468 cites W2083400649 @default.
- W3123938468 cites W2087528369 @default.
- W3123938468 cites W2114652055 @default.
- W3123938468 cites W2126554879 @default.
- W3123938468 cites W2143197238 @default.
- W3123938468 cites W2146696367 @default.
- W3123938468 cites W2149628368 @default.
- W3123938468 cites W2154943049 @default.
- W3123938468 cites W2166048187 @default.
- W3123938468 cites W2168481151 @default.
- W3123938468 cites W2168493061 @default.
- W3123938468 cites W2250539671 @default.
- W3123938468 cites W2270941958 @default.
- W3123938468 cites W2290883490 @default.
- W3123938468 cites W2317744239 @default.
- W3123938468 cites W2380220149 @default.
- W3123938468 cites W2487341573 @default.
- W3123938468 cites W2578956492 @default.
- W3123938468 cites W2583998542 @default.
- W3123938468 cites W2599253365 @default.
- W3123938468 cites W2606262271 @default.
- W3123938468 cites W2619573303 @default.
- W3123938468 cites W2730034540 @default.
- W3123938468 cites W2738900493 @default.
- W3123938468 cites W2768003946 @default.
- W3123938468 cites W2770073247 @default.
- W3123938468 cites W2790400419 @default.
- W3123938468 cites W2791019495 @default.
- W3123938468 cites W2805759997 @default.
- W3123938468 cites W2806137073 @default.
- W3123938468 cites W2886696774 @default.
- W3123938468 cites W2889169802 @default.
- W3123938468 cites W2889284355 @default.
- W3123938468 cites W2894248579 @default.
- W3123938468 cites W2900517206 @default.
- W3123938468 cites W2910830936 @default.
- W3123938468 cites W2918378401 @default.
- W3123938468 cites W2921024999 @default.
- W3123938468 cites W2921713999 @default.
- W3123938468 cites W2963103847 @default.
- W3123938468 cites W2963177779 @default.
- W3123938468 cites W2963291843 @default.
- W3123938468 cites W3008071179 @default.
- W3123938468 cites W3100933494 @default.
- W3123938468 cites W4212863985 @default.
- W3123938468 cites W4249142469 @default.
- W3123938468 cites W4292083457 @default.
- W3123938468 cites W883434633 @default.
- W3123938468 doi "https://doi.org/10.1002/cpe.6204" @default.
- W3123938468 hasPublicationYear "2021" @default.
- W3123938468 type Work @default.
- W3123938468 sameAs 3123938468 @default.
- W3123938468 citedByCount "0" @default.
- W3123938468 crossrefType "journal-article" @default.
- W3123938468 hasAuthorship W3123938468A5003365757 @default.
- W3123938468 hasAuthorship W3123938468A5032544861 @default.
- W3123938468 hasAuthorship W3123938468A5087050752 @default.
- W3123938468 hasConcept C108583219 @default.
- W3123938468 hasConcept C119857082 @default.
- W3123938468 hasConcept C134306372 @default.
- W3123938468 hasConcept C154945302 @default.
- W3123938468 hasConcept C15744967 @default.
- W3123938468 hasConcept C173801870 @default.
- W3123938468 hasConcept C199360897 @default.
- W3123938468 hasConcept C2776035688 @default.
- W3123938468 hasConcept C2777212361 @default.
- W3123938468 hasConcept C2780522230 @default.
- W3123938468 hasConcept C2781215313 @default.
- W3123938468 hasConcept C33923547 @default.
- W3123938468 hasConcept C41008148 @default.
- W3123938468 hasConcept C46312422 @default.
- W3123938468 hasConcept C77618280 @default.
- W3123938468 hasConceptScore W3123938468C108583219 @default.
- W3123938468 hasConceptScore W3123938468C119857082 @default.
- W3123938468 hasConceptScore W3123938468C134306372 @default.
- W3123938468 hasConceptScore W3123938468C154945302 @default.
- W3123938468 hasConceptScore W3123938468C15744967 @default.
- W3123938468 hasConceptScore W3123938468C173801870 @default.
- W3123938468 hasConceptScore W3123938468C199360897 @default.
- W3123938468 hasConceptScore W3123938468C2776035688 @default.