Matches in SemOpenAlex for { <https://semopenalex.org/work/W3123991164> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W3123991164 abstract "Shot-by-shot match video segmentation is essential in video-based microscopic data annotation and collection for strategic analysis. With the help of deep learning vision technology, the shuttlecock trajectory can be depicted from broadcast video with accuracy around 78%. In this work, to develop automatic badminton match video labeling, we applied Artificial Neural Networks (ANNs) in the contest strategy data collection to speed up the labeling procedure. The proposed ANN was trained to detect badminton shot events based on shuttlecock trajectories in the contest video. Badminton shot events include serving, hitting, and dead ball. With the help of these shot events, the strategy analyst could annotate strategy information more efficiently and reduce labor costs significantly." @default.
- W3123991164 created "2021-02-01" @default.
- W3123991164 creator A5040101293 @default.
- W3123991164 creator A5043225994 @default.
- W3123991164 creator A5056878343 @default.
- W3123991164 creator A5071499048 @default.
- W3123991164 date "2020-12-01" @default.
- W3123991164 modified "2023-09-24" @default.
- W3123991164 title "Trajectory-based Badminton Shots Detection" @default.
- W3123991164 cites W1977060095 @default.
- W3123991164 cites W1993220166 @default.
- W3123991164 cites W2063832028 @default.
- W3123991164 cites W2163512221 @default.
- W3123991164 cites W2292446209 @default.
- W3123991164 cites W2467856464 @default.
- W3123991164 cites W2766290938 @default.
- W3123991164 cites W2986406231 @default.
- W3123991164 cites W2991404288 @default.
- W3123991164 doi "https://doi.org/10.1109/icpai51961.2020.00020" @default.
- W3123991164 hasPublicationYear "2020" @default.
- W3123991164 type Work @default.
- W3123991164 sameAs 3123991164 @default.
- W3123991164 citedByCount "4" @default.
- W3123991164 countsByYear W31239911642022 @default.
- W3123991164 crossrefType "proceedings-article" @default.
- W3123991164 hasAuthorship W3123991164A5040101293 @default.
- W3123991164 hasAuthorship W3123991164A5043225994 @default.
- W3123991164 hasAuthorship W3123991164A5056878343 @default.
- W3123991164 hasAuthorship W3123991164A5071499048 @default.
- W3123991164 hasConcept C121332964 @default.
- W3123991164 hasConcept C1276947 @default.
- W3123991164 hasConcept C13662910 @default.
- W3123991164 hasConcept C154945302 @default.
- W3123991164 hasConcept C31972630 @default.
- W3123991164 hasConcept C41008148 @default.
- W3123991164 hasConceptScore W3123991164C121332964 @default.
- W3123991164 hasConceptScore W3123991164C1276947 @default.
- W3123991164 hasConceptScore W3123991164C13662910 @default.
- W3123991164 hasConceptScore W3123991164C154945302 @default.
- W3123991164 hasConceptScore W3123991164C31972630 @default.
- W3123991164 hasConceptScore W3123991164C41008148 @default.
- W3123991164 hasFunder F4320309618 @default.
- W3123991164 hasFunder F4320321408 @default.
- W3123991164 hasLocation W31239911641 @default.
- W3123991164 hasOpenAccess W3123991164 @default.
- W3123991164 hasPrimaryLocation W31239911641 @default.
- W3123991164 hasRelatedWork W1562288862 @default.
- W3123991164 hasRelatedWork W1574454358 @default.
- W3123991164 hasRelatedWork W1891287906 @default.
- W3123991164 hasRelatedWork W1969923398 @default.
- W3123991164 hasRelatedWork W1978753601 @default.
- W3123991164 hasRelatedWork W2000407620 @default.
- W3123991164 hasRelatedWork W2007815619 @default.
- W3123991164 hasRelatedWork W2095989223 @default.
- W3123991164 hasRelatedWork W2140220698 @default.
- W3123991164 hasRelatedWork W4246474087 @default.
- W3123991164 isParatext "false" @default.
- W3123991164 isRetracted "false" @default.
- W3123991164 magId "3123991164" @default.
- W3123991164 workType "article" @default.