Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124070712> ?p ?o ?g. }
- W3124070712 abstract "Problem decomposition plays a vital role when applying cooperative coevolution (CC) to large scale global optimization problems. However, most learning-based decomposition algorithms either only apply to additively separable problems or face the issue of false separability detections. Directing against these limitations, this study proposes a novel decomposition algorithm called surrogate-assisted variable grouping (SVG). SVG first designs a general-separability-oriented detection criterion according to whether the optimum of a variable changes with other variables. This criterion is consistent with the separability definition and thus endows SVG with broad applicability and high accuracy. To reduce the fitness evaluation requirement, SVG seeks the optimum of a variable with the help of a surrogate model rather than the original expensive high-dimensional model. Moreover, it converts the variable grouping process into a dynamic-binary-tree search one, which facilitates reutilizing historical separability detection information and thus reducing detection times. To evaluate the performance of SVG, a suite of benchmark functions with up to 2000 dimensions, including additively and non-additively separable ones, were designed. Experimental results on these functions indicate that, compared with six state-of-the-art decomposition algorithms, SVG possesses broader applicability and competitive efficiency. Furthermore, it can significantly enhance the optimization performance of CC." @default.
- W3124070712 created "2021-02-01" @default.
- W3124070712 creator A5042571447 @default.
- W3124070712 creator A5043248350 @default.
- W3124070712 creator A5053043471 @default.
- W3124070712 creator A5059165071 @default.
- W3124070712 creator A5073884087 @default.
- W3124070712 creator A5091176232 @default.
- W3124070712 date "2021-01-18" @default.
- W3124070712 modified "2023-10-16" @default.
- W3124070712 title "A Surrogate-Assisted Variable Grouping Algorithm for General Large Scale Global Optimization Problems" @default.
- W3124070712 cites W120185646 @default.
- W3124070712 cites W1227486161 @default.
- W3124070712 cites W1555689267 @default.
- W3124070712 cites W1978581090 @default.
- W3124070712 cites W1996936486 @default.
- W3124070712 cites W2011174137 @default.
- W3124070712 cites W2045050140 @default.
- W3124070712 cites W2061706483 @default.
- W3124070712 cites W2062050542 @default.
- W3124070712 cites W2067936154 @default.
- W3124070712 cites W2078617346 @default.
- W3124070712 cites W2081524587 @default.
- W3124070712 cites W2085821381 @default.
- W3124070712 cites W2099655666 @default.
- W3124070712 cites W2100211715 @default.
- W3124070712 cites W2109472859 @default.
- W3124070712 cites W2118840131 @default.
- W3124070712 cites W2120043163 @default.
- W3124070712 cites W2121429049 @default.
- W3124070712 cites W2145418868 @default.
- W3124070712 cites W2155005783 @default.
- W3124070712 cites W2156566884 @default.
- W3124070712 cites W2163286715 @default.
- W3124070712 cites W2269421492 @default.
- W3124070712 cites W2413634576 @default.
- W3124070712 cites W2517173125 @default.
- W3124070712 cites W2554924637 @default.
- W3124070712 cites W2558459924 @default.
- W3124070712 cites W2601159143 @default.
- W3124070712 cites W2602908436 @default.
- W3124070712 cites W2608705546 @default.
- W3124070712 cites W2734552202 @default.
- W3124070712 cites W2745003183 @default.
- W3124070712 cites W2752606981 @default.
- W3124070712 cites W2769744156 @default.
- W3124070712 cites W2816130757 @default.
- W3124070712 cites W2890087117 @default.
- W3124070712 cites W2891186800 @default.
- W3124070712 cites W2892336140 @default.
- W3124070712 cites W2897073410 @default.
- W3124070712 cites W2907416561 @default.
- W3124070712 cites W2910777435 @default.
- W3124070712 cites W2916083864 @default.
- W3124070712 cites W2963219770 @default.
- W3124070712 cites W2963492071 @default.
- W3124070712 cites W2963939672 @default.
- W3124070712 cites W2968671794 @default.
- W3124070712 cites W2982589988 @default.
- W3124070712 cites W2987248529 @default.
- W3124070712 cites W3007644385 @default.
- W3124070712 cites W3016654117 @default.
- W3124070712 cites W3019769413 @default.
- W3124070712 cites W3083027881 @default.
- W3124070712 cites W3099328850 @default.
- W3124070712 doi "https://doi.org/10.48550/arxiv.2101.07430" @default.
- W3124070712 hasPublicationYear "2021" @default.
- W3124070712 type Work @default.
- W3124070712 sameAs 3124070712 @default.
- W3124070712 citedByCount "0" @default.
- W3124070712 crossrefType "posted-content" @default.
- W3124070712 hasAuthorship W3124070712A5042571447 @default.
- W3124070712 hasAuthorship W3124070712A5043248350 @default.
- W3124070712 hasAuthorship W3124070712A5053043471 @default.
- W3124070712 hasAuthorship W3124070712A5059165071 @default.
- W3124070712 hasAuthorship W3124070712A5073884087 @default.
- W3124070712 hasAuthorship W3124070712A5091176232 @default.
- W3124070712 hasBestOaLocation W31240707121 @default.
- W3124070712 hasConcept C111919701 @default.
- W3124070712 hasConcept C113174947 @default.
- W3124070712 hasConcept C11413529 @default.
- W3124070712 hasConcept C124681953 @default.
- W3124070712 hasConcept C126255220 @default.
- W3124070712 hasConcept C13280743 @default.
- W3124070712 hasConcept C134306372 @default.
- W3124070712 hasConcept C154945302 @default.
- W3124070712 hasConcept C182365436 @default.
- W3124070712 hasConcept C185798385 @default.
- W3124070712 hasConcept C18903297 @default.
- W3124070712 hasConcept C202629362 @default.
- W3124070712 hasConcept C205649164 @default.
- W3124070712 hasConcept C2778584943 @default.
- W3124070712 hasConcept C33923547 @default.
- W3124070712 hasConcept C41008148 @default.
- W3124070712 hasConcept C48372109 @default.
- W3124070712 hasConcept C70710897 @default.
- W3124070712 hasConcept C86803240 @default.
- W3124070712 hasConcept C94375191 @default.
- W3124070712 hasConceptScore W3124070712C111919701 @default.
- W3124070712 hasConceptScore W3124070712C113174947 @default.