Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124103886> ?p ?o ?g. }
- W3124103886 endingPage "77" @default.
- W3124103886 startingPage "65" @default.
- W3124103886 abstract "We construct factor models based on disaggregate survey data for forecasting national aggregate macroeconomic variables. Our methodology applies regional and sectoral factor models to Norges Bank’s regional survey and to the Swedish Business Tendency Survey. The analysis identifies which of the pieces of information extracted from the individual regions in Norges Bank’s survey and the sectors for the two surveys perform particularly well at forecasting different variables at various horizons. The results show that several factor models beat an autoregressive benchmark in forecasting inflation and the unemployment rate. However, the factor models are most successful at forecasting GDP growth. Forecast combinations using the past performances of regional and sectoral factor models yield the most accurate forecasts in the majority of the cases." @default.
- W3124103886 created "2021-02-01" @default.
- W3124103886 creator A5002657304 @default.
- W3124103886 creator A5013105578 @default.
- W3124103886 creator A5066642863 @default.
- W3124103886 date "2014-01-01" @default.
- W3124103886 modified "2023-09-28" @default.
- W3124103886 title "Forecasting macroeconomic variables using disaggregate survey data" @default.
- W3124103886 cites W1492491495 @default.
- W3124103886 cites W1605276600 @default.
- W3124103886 cites W1986528915 @default.
- W3124103886 cites W2000842688 @default.
- W3124103886 cites W2002937282 @default.
- W3124103886 cites W2008219156 @default.
- W3124103886 cites W2016547905 @default.
- W3124103886 cites W2020173951 @default.
- W3124103886 cites W2044078398 @default.
- W3124103886 cites W2052975614 @default.
- W3124103886 cites W2081052112 @default.
- W3124103886 cites W2084689273 @default.
- W3124103886 cites W2110515654 @default.
- W3124103886 cites W2113550269 @default.
- W3124103886 cites W2147071066 @default.
- W3124103886 cites W2147190688 @default.
- W3124103886 cites W2161496057 @default.
- W3124103886 cites W2164923450 @default.
- W3124103886 cites W3121902344 @default.
- W3124103886 cites W3122110533 @default.
- W3124103886 cites W3122351404 @default.
- W3124103886 cites W3122710626 @default.
- W3124103886 cites W4239414618 @default.
- W3124103886 cites W4256645166 @default.
- W3124103886 doi "https://doi.org/10.1016/j.ijforecast.2013.02.003" @default.
- W3124103886 hasPublicationYear "2014" @default.
- W3124103886 type Work @default.
- W3124103886 sameAs 3124103886 @default.
- W3124103886 citedByCount "43" @default.
- W3124103886 countsByYear W31241038862014 @default.
- W3124103886 countsByYear W31241038862015 @default.
- W3124103886 countsByYear W31241038862016 @default.
- W3124103886 countsByYear W31241038862017 @default.
- W3124103886 countsByYear W31241038862018 @default.
- W3124103886 countsByYear W31241038862019 @default.
- W3124103886 countsByYear W31241038862020 @default.
- W3124103886 countsByYear W31241038862021 @default.
- W3124103886 countsByYear W31241038862022 @default.
- W3124103886 crossrefType "journal-article" @default.
- W3124103886 hasAuthorship W3124103886A5002657304 @default.
- W3124103886 hasAuthorship W3124103886A5013105578 @default.
- W3124103886 hasAuthorship W3124103886A5066642863 @default.
- W3124103886 hasBestOaLocation W31241038862 @default.
- W3124103886 hasConcept C105795698 @default.
- W3124103886 hasConcept C10879293 @default.
- W3124103886 hasConcept C121332964 @default.
- W3124103886 hasConcept C126285488 @default.
- W3124103886 hasConcept C13280743 @default.
- W3124103886 hasConcept C139719470 @default.
- W3124103886 hasConcept C149782125 @default.
- W3124103886 hasConcept C155702961 @default.
- W3124103886 hasConcept C159877910 @default.
- W3124103886 hasConcept C159985019 @default.
- W3124103886 hasConcept C162324750 @default.
- W3124103886 hasConcept C163068380 @default.
- W3124103886 hasConcept C185798385 @default.
- W3124103886 hasConcept C192562407 @default.
- W3124103886 hasConcept C198477413 @default.
- W3124103886 hasConcept C200941418 @default.
- W3124103886 hasConcept C205649164 @default.
- W3124103886 hasConcept C2776892200 @default.
- W3124103886 hasConcept C2778126366 @default.
- W3124103886 hasConcept C33332235 @default.
- W3124103886 hasConcept C33923547 @default.
- W3124103886 hasConcept C4679612 @default.
- W3124103886 hasConceptScore W3124103886C105795698 @default.
- W3124103886 hasConceptScore W3124103886C10879293 @default.
- W3124103886 hasConceptScore W3124103886C121332964 @default.
- W3124103886 hasConceptScore W3124103886C126285488 @default.
- W3124103886 hasConceptScore W3124103886C13280743 @default.
- W3124103886 hasConceptScore W3124103886C139719470 @default.
- W3124103886 hasConceptScore W3124103886C149782125 @default.
- W3124103886 hasConceptScore W3124103886C155702961 @default.
- W3124103886 hasConceptScore W3124103886C159877910 @default.
- W3124103886 hasConceptScore W3124103886C159985019 @default.
- W3124103886 hasConceptScore W3124103886C162324750 @default.
- W3124103886 hasConceptScore W3124103886C163068380 @default.
- W3124103886 hasConceptScore W3124103886C185798385 @default.
- W3124103886 hasConceptScore W3124103886C192562407 @default.
- W3124103886 hasConceptScore W3124103886C198477413 @default.
- W3124103886 hasConceptScore W3124103886C200941418 @default.
- W3124103886 hasConceptScore W3124103886C205649164 @default.
- W3124103886 hasConceptScore W3124103886C2776892200 @default.
- W3124103886 hasConceptScore W3124103886C2778126366 @default.
- W3124103886 hasConceptScore W3124103886C33332235 @default.
- W3124103886 hasConceptScore W3124103886C33923547 @default.
- W3124103886 hasConceptScore W3124103886C4679612 @default.
- W3124103886 hasIssue "1" @default.
- W3124103886 hasLocation W31241038861 @default.
- W3124103886 hasLocation W31241038862 @default.