Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124149265> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3124149265 abstract "The load forecasting is important for the distribution system operation and expansion planning. The main methodologies for load forecasting using deep learning are Long Short-Term Memory (LSTM) and Convolution Neural Networks (CNN). LSTM is specialized in sequential data; on the other hand CNN is specialized in image data. The residential consumption can be treated as a time series (sequential data) and a two-dimensional (image data) dataset. Therefore, LSTM and CNN can be used to extract data characteristics from the residential consumption dataset. Thus, this paper reviews and compares the main methodologies for residential load forecasting such as CNN, LSTM, and CNN-LSTM. The mean square error (MSE) and root mean square error (RMSE) are used as metrics. The dataset is from real residential consumers in Ireland. The result shows a similar performance in training and testing. The best results are found when CNN and LSTM are used together." @default.
- W3124149265 created "2021-02-01" @default.
- W3124149265 creator A5017224965 @default.
- W3124149265 creator A5022294626 @default.
- W3124149265 creator A5054565315 @default.
- W3124149265 date "2020-09-28" @default.
- W3124149265 modified "2023-09-26" @default.
- W3124149265 title "Review of Deep Learning Application for Short-Term Household Load Forecasting" @default.
- W3124149265 cites W1720804347 @default.
- W3124149265 cites W1738803388 @default.
- W3124149265 cites W1968806673 @default.
- W3124149265 cites W1986604238 @default.
- W3124149265 cites W2019411586 @default.
- W3124149265 cites W2057160778 @default.
- W3124149265 cites W2094053746 @default.
- W3124149265 cites W2597866042 @default.
- W3124149265 cites W2601171548 @default.
- W3124149265 cites W2754252319 @default.
- W3124149265 cites W2781956327 @default.
- W3124149265 cites W2896556344 @default.
- W3124149265 cites W2899055613 @default.
- W3124149265 cites W2907164325 @default.
- W3124149265 cites W2948490758 @default.
- W3124149265 cites W2952133361 @default.
- W3124149265 cites W2954123905 @default.
- W3124149265 cites W2956702988 @default.
- W3124149265 cites W2981375775 @default.
- W3124149265 cites W2997970006 @default.
- W3124149265 doi "https://doi.org/10.1109/tdla47668.2020.9326148" @default.
- W3124149265 hasPublicationYear "2020" @default.
- W3124149265 type Work @default.
- W3124149265 sameAs 3124149265 @default.
- W3124149265 citedByCount "4" @default.
- W3124149265 countsByYear W31241492652022 @default.
- W3124149265 countsByYear W31241492652023 @default.
- W3124149265 crossrefType "proceedings-article" @default.
- W3124149265 hasAuthorship W3124149265A5017224965 @default.
- W3124149265 hasAuthorship W3124149265A5022294626 @default.
- W3124149265 hasAuthorship W3124149265A5054565315 @default.
- W3124149265 hasConcept C105795698 @default.
- W3124149265 hasConcept C108583219 @default.
- W3124149265 hasConcept C119857082 @default.
- W3124149265 hasConcept C121332964 @default.
- W3124149265 hasConcept C124101348 @default.
- W3124149265 hasConcept C139945424 @default.
- W3124149265 hasConcept C151406439 @default.
- W3124149265 hasConcept C153180895 @default.
- W3124149265 hasConcept C154945302 @default.
- W3124149265 hasConcept C33923547 @default.
- W3124149265 hasConcept C41008148 @default.
- W3124149265 hasConcept C45347329 @default.
- W3124149265 hasConcept C50644808 @default.
- W3124149265 hasConcept C61797465 @default.
- W3124149265 hasConcept C62520636 @default.
- W3124149265 hasConcept C81363708 @default.
- W3124149265 hasConceptScore W3124149265C105795698 @default.
- W3124149265 hasConceptScore W3124149265C108583219 @default.
- W3124149265 hasConceptScore W3124149265C119857082 @default.
- W3124149265 hasConceptScore W3124149265C121332964 @default.
- W3124149265 hasConceptScore W3124149265C124101348 @default.
- W3124149265 hasConceptScore W3124149265C139945424 @default.
- W3124149265 hasConceptScore W3124149265C151406439 @default.
- W3124149265 hasConceptScore W3124149265C153180895 @default.
- W3124149265 hasConceptScore W3124149265C154945302 @default.
- W3124149265 hasConceptScore W3124149265C33923547 @default.
- W3124149265 hasConceptScore W3124149265C41008148 @default.
- W3124149265 hasConceptScore W3124149265C45347329 @default.
- W3124149265 hasConceptScore W3124149265C50644808 @default.
- W3124149265 hasConceptScore W3124149265C61797465 @default.
- W3124149265 hasConceptScore W3124149265C62520636 @default.
- W3124149265 hasConceptScore W3124149265C81363708 @default.
- W3124149265 hasFunder F4320321091 @default.
- W3124149265 hasLocation W31241492651 @default.
- W3124149265 hasOpenAccess W3124149265 @default.
- W3124149265 hasPrimaryLocation W31241492651 @default.
- W3124149265 hasRelatedWork W2337926734 @default.
- W3124149265 hasRelatedWork W2738221750 @default.
- W3124149265 hasRelatedWork W3129634582 @default.
- W3124149265 hasRelatedWork W3156786002 @default.
- W3124149265 hasRelatedWork W3165266428 @default.
- W3124149265 hasRelatedWork W4309045103 @default.
- W3124149265 hasRelatedWork W4312417841 @default.
- W3124149265 hasRelatedWork W4366224123 @default.
- W3124149265 hasRelatedWork W4381487685 @default.
- W3124149265 hasRelatedWork W564581980 @default.
- W3124149265 isParatext "false" @default.
- W3124149265 isRetracted "false" @default.
- W3124149265 magId "3124149265" @default.
- W3124149265 workType "article" @default.