Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124177323> ?p ?o ?g. }
- W3124177323 endingPage "33755" @default.
- W3124177323 startingPage "33704" @default.
- W3124177323 abstract "Radars are expected to become the main sensors in various civilian applications, ranging from health-care monitoring to autonomous driving. Their success is mainly due to the availability of both low cost integrated devices, equipped with compact antenna arrays, and computationally efficient signal processing techniques. An increasingly important role in the field of radar signal processing is played by machine learning and deep learning techniques. Their use has been first taken into consideration in human gesture and motion recognition, and in various healthcare applications. More recently, their exploitation in object detection and localization has been also investigated. The research work accomplished in these areas has raised various technical problems that need to be carefully addressed before adopting the above mentioned techniques in real world radar systems. In this manuscript, a comprehensive overview of the machine learning and deep learning techniques currently being considered for their use in radar systems is provided. Moreover, some relevant open problems and current trends in this research area are analysed. Finally, various numerical results, based on both synthetically generated and experimental datasets, and referring to two different applications are illustrated. These allow readers to assess the efficacy of specific methods and to compare them in terms of accuracy and computational effort." @default.
- W3124177323 created "2021-02-01" @default.
- W3124177323 creator A5028797938 @default.
- W3124177323 creator A5045697560 @default.
- W3124177323 creator A5050342795 @default.
- W3124177323 date "2021-01-01" @default.
- W3124177323 modified "2023-10-17" @default.
- W3124177323 title "Machine Learning and Deep Learning Techniques for Colocated MIMO Radars: A Tutorial Overview" @default.
- W3124177323 cites W1498436455 @default.
- W3124177323 cites W1510355813 @default.
- W3124177323 cites W1513497107 @default.
- W3124177323 cites W1533539416 @default.
- W3124177323 cites W1536680647 @default.
- W3124177323 cites W1599703818 @default.
- W3124177323 cites W1615912037 @default.
- W3124177323 cites W1667950888 @default.
- W3124177323 cites W1903029394 @default.
- W3124177323 cites W1968969471 @default.
- W3124177323 cites W1972406251 @default.
- W3124177323 cites W1987450470 @default.
- W3124177323 cites W1996639130 @default.
- W3124177323 cites W2018744547 @default.
- W3124177323 cites W2022167766 @default.
- W3124177323 cites W2025654678 @default.
- W3124177323 cites W2029249125 @default.
- W3124177323 cites W2030250082 @default.
- W3124177323 cites W2034290464 @default.
- W3124177323 cites W2043415540 @default.
- W3124177323 cites W2045423428 @default.
- W3124177323 cites W2047129912 @default.
- W3124177323 cites W2051812123 @default.
- W3124177323 cites W2055590061 @default.
- W3124177323 cites W2062664540 @default.
- W3124177323 cites W2064675550 @default.
- W3124177323 cites W2066218102 @default.
- W3124177323 cites W2078239933 @default.
- W3124177323 cites W2078409967 @default.
- W3124177323 cites W2083506609 @default.
- W3124177323 cites W2106564897 @default.
- W3124177323 cites W2108412198 @default.
- W3124177323 cites W2108598243 @default.
- W3124177323 cites W2112261687 @default.
- W3124177323 cites W2113638573 @default.
- W3124177323 cites W2114354118 @default.
- W3124177323 cites W2122111042 @default.
- W3124177323 cites W2124233298 @default.
- W3124177323 cites W2125930644 @default.
- W3124177323 cites W2128131274 @default.
- W3124177323 cites W2130509920 @default.
- W3124177323 cites W2130988654 @default.
- W3124177323 cites W2133475491 @default.
- W3124177323 cites W2140019524 @default.
- W3124177323 cites W2140515654 @default.
- W3124177323 cites W2140959322 @default.
- W3124177323 cites W2144562310 @default.
- W3124177323 cites W2145561180 @default.
- W3124177323 cites W2145841867 @default.
- W3124177323 cites W2150355110 @default.
- W3124177323 cites W2150593711 @default.
- W3124177323 cites W2153567056 @default.
- W3124177323 cites W2153594606 @default.
- W3124177323 cites W2155678104 @default.
- W3124177323 cites W2157770256 @default.
- W3124177323 cites W2158549121 @default.
- W3124177323 cites W2159521390 @default.
- W3124177323 cites W2163430887 @default.
- W3124177323 cites W2165365566 @default.
- W3124177323 cites W2165698076 @default.
- W3124177323 cites W2188039057 @default.
- W3124177323 cites W2242223225 @default.
- W3124177323 cites W2272307566 @default.
- W3124177323 cites W2278587467 @default.
- W3124177323 cites W2424410299 @default.
- W3124177323 cites W2513079078 @default.
- W3124177323 cites W2514265276 @default.
- W3124177323 cites W2531174837 @default.
- W3124177323 cites W2536305597 @default.
- W3124177323 cites W2547878593 @default.
- W3124177323 cites W2552002155 @default.
- W3124177323 cites W2560609797 @default.
- W3124177323 cites W2567639614 @default.
- W3124177323 cites W2570343428 @default.
- W3124177323 cites W2582666574 @default.
- W3124177323 cites W2592680288 @default.
- W3124177323 cites W2608873842 @default.
- W3124177323 cites W2618530766 @default.
- W3124177323 cites W2626654349 @default.
- W3124177323 cites W2725294424 @default.
- W3124177323 cites W2742562184 @default.
- W3124177323 cites W2746870488 @default.
- W3124177323 cites W2770967835 @default.
- W3124177323 cites W2783758433 @default.
- W3124177323 cites W2789436454 @default.
- W3124177323 cites W2789648429 @default.
- W3124177323 cites W2790943595 @default.
- W3124177323 cites W2793796005 @default.
- W3124177323 cites W2798205579 @default.
- W3124177323 cites W2807946084 @default.