Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124202287> ?p ?o ?g. }
- W3124202287 abstract "Abstract Summary Mapping distal regulatory elements, such as enhancers, is the cornerstone for investigating genome evolution, understanding critical biological functions, and ultimately elucidating how genetic variations may influence diseases. Previous enhancer prediction methods have used either unsupervised approaches or supervised methods with limited training data. Moreover, past approaches have operationalized enhancer discovery as a binary classification problem without accurate enhancer boundary detection, producing low-resolution annotations with redundant regions and reducing the statistical power for downstream analyses (e.g., causal variant mapping and functional validations). Here, we addressed these challenges via a two-step model called DECODE. First, we employed direct enhancer activity readouts from novel functional characterization assays, such as STARR-seq, to train a deep neural network classifier for accurate cell-type-specific enhancer prediction. Second, to improve the annotation resolution (∼500 bp), we implemented a weakly-supervised object detection framework for enhancer localization with precise boundary detection (at 10 bp resolution) using gradient-weighted class activation mapping. Results Our DECODE binary classifier outperformed the state-of-the-art enhancer prediction methods by 24% in transgenic mouse validation. Further, DECODE object detection can condense enhancer annotations to only 12.6% of the original size, while still reporting higher conservation scores and genome-wide association study variant enrichments. Overall, DECODE improves the efficiency of regulatory element mapping with graphic processing units for deep-learning applications and is a powerful tool for enhancer prediction and boundary localization. Contact pi@gersteinlab.org" @default.
- W3124202287 created "2021-02-01" @default.
- W3124202287 creator A5000807861 @default.
- W3124202287 creator A5001911874 @default.
- W3124202287 creator A5008412713 @default.
- W3124202287 creator A5042321575 @default.
- W3124202287 creator A5053668853 @default.
- W3124202287 creator A5065309573 @default.
- W3124202287 creator A5065576006 @default.
- W3124202287 creator A5083193232 @default.
- W3124202287 date "2021-01-28" @default.
- W3124202287 modified "2023-09-23" @default.
- W3124202287 title "DECODE: A Deep-learning Framework for Condensing Enhancers and Refining Boundaries with Large-scale Functional Assays" @default.
- W3124202287 cites W1019830208 @default.
- W3124202287 cites W1957469265 @default.
- W3124202287 cites W1970707135 @default.
- W3124202287 cites W1992213480 @default.
- W3124202287 cites W2018363492 @default.
- W3124202287 cites W2033201031 @default.
- W3124202287 cites W2045362835 @default.
- W3124202287 cites W2069076648 @default.
- W3124202287 cites W2076063813 @default.
- W3124202287 cites W2090705041 @default.
- W3124202287 cites W2098793454 @default.
- W3124202287 cites W2101296410 @default.
- W3124202287 cites W2108108770 @default.
- W3124202287 cites W2119387367 @default.
- W3124202287 cites W2152100019 @default.
- W3124202287 cites W2153860431 @default.
- W3124202287 cites W2194775991 @default.
- W3124202287 cites W2247766769 @default.
- W3124202287 cites W2620467763 @default.
- W3124202287 cites W2621774891 @default.
- W3124202287 cites W2752782242 @default.
- W3124202287 cites W2772741766 @default.
- W3124202287 cites W2780560743 @default.
- W3124202287 cites W2806953728 @default.
- W3124202287 cites W2808479265 @default.
- W3124202287 cites W2911555896 @default.
- W3124202287 cites W2962858109 @default.
- W3124202287 cites W2970073459 @default.
- W3124202287 cites W2992086063 @default.
- W3124202287 cites W2999304916 @default.
- W3124202287 cites W3006500278 @default.
- W3124202287 cites W3007172120 @default.
- W3124202287 cites W3029661147 @default.
- W3124202287 cites W3045910546 @default.
- W3124202287 cites W3046699218 @default.
- W3124202287 cites W3103000856 @default.
- W3124202287 cites W40040914 @default.
- W3124202287 cites W4230875896 @default.
- W3124202287 cites W571682839 @default.
- W3124202287 cites W587085329 @default.
- W3124202287 doi "https://doi.org/10.1101/2021.01.27.428477" @default.
- W3124202287 hasPublicationYear "2021" @default.
- W3124202287 type Work @default.
- W3124202287 sameAs 3124202287 @default.
- W3124202287 citedByCount "0" @default.
- W3124202287 crossrefType "posted-content" @default.
- W3124202287 hasAuthorship W3124202287A5000807861 @default.
- W3124202287 hasAuthorship W3124202287A5001911874 @default.
- W3124202287 hasAuthorship W3124202287A5008412713 @default.
- W3124202287 hasAuthorship W3124202287A5042321575 @default.
- W3124202287 hasAuthorship W3124202287A5053668853 @default.
- W3124202287 hasAuthorship W3124202287A5065309573 @default.
- W3124202287 hasAuthorship W3124202287A5065576006 @default.
- W3124202287 hasAuthorship W3124202287A5083193232 @default.
- W3124202287 hasBestOaLocation W31242022871 @default.
- W3124202287 hasConcept C104317684 @default.
- W3124202287 hasConcept C111936080 @default.
- W3124202287 hasConcept C119857082 @default.
- W3124202287 hasConcept C12267149 @default.
- W3124202287 hasConcept C153180895 @default.
- W3124202287 hasConcept C154945302 @default.
- W3124202287 hasConcept C41008148 @default.
- W3124202287 hasConcept C54355233 @default.
- W3124202287 hasConcept C66905080 @default.
- W3124202287 hasConcept C70721500 @default.
- W3124202287 hasConcept C86339819 @default.
- W3124202287 hasConcept C86803240 @default.
- W3124202287 hasConcept C95623464 @default.
- W3124202287 hasConceptScore W3124202287C104317684 @default.
- W3124202287 hasConceptScore W3124202287C111936080 @default.
- W3124202287 hasConceptScore W3124202287C119857082 @default.
- W3124202287 hasConceptScore W3124202287C12267149 @default.
- W3124202287 hasConceptScore W3124202287C153180895 @default.
- W3124202287 hasConceptScore W3124202287C154945302 @default.
- W3124202287 hasConceptScore W3124202287C41008148 @default.
- W3124202287 hasConceptScore W3124202287C54355233 @default.
- W3124202287 hasConceptScore W3124202287C66905080 @default.
- W3124202287 hasConceptScore W3124202287C70721500 @default.
- W3124202287 hasConceptScore W3124202287C86339819 @default.
- W3124202287 hasConceptScore W3124202287C86803240 @default.
- W3124202287 hasConceptScore W3124202287C95623464 @default.
- W3124202287 hasLocation W31242022871 @default.
- W3124202287 hasOpenAccess W3124202287 @default.
- W3124202287 hasPrimaryLocation W31242022871 @default.
- W3124202287 hasRelatedWork W2001652754 @default.
- W3124202287 hasRelatedWork W2112343299 @default.
- W3124202287 hasRelatedWork W2275058042 @default.