Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124222757> ?p ?o ?g. }
- W3124222757 endingPage "17428" @default.
- W3124222757 startingPage "17421" @default.
- W3124222757 abstract "In the literature of Economics, Engineering and Operations Research, the estimation of production frontiers is a current hot topic. Many parametric and nonparametric methodologies have been introduced for estimating technical efficiency of a set of units (for example, firms) from the production frontier. However, few of these methodologies are based upon machine learning techniques, despite being a rising field of research. Recently, a bridge has been built between these literatures, machine learning and production theory, through a new technique proposed in Esteve et al. (2020), called Efficiency Analysis Trees (EAT). The algorithm developed from EAT, based on the well-known Classification and Regression Trees (CART) machine learning technique, is a greedy technique that uses a particular heuristic for the selection of the next node to be split during the decision tree development process. Nevertheless, as we show in this paper, for different sample sizes and number of variables, the heuristic used by EAT is not capable of obtaining the tree with the minimum mean square error (MSE). For this reason, in this paper, a backtracking technique is implemented to improve the MSE obtained by the EAT algorithm. Additionally, a pair of new algorithms are introduced which combine the heuristic technique used by the standard EAT and the backtracking algorithm to enhance the reduction of the MSE, while decreasing the computation time. Our research is based on some simulated experiments. According to our computational results, the combination of the heuristic and the backtracking algorithm, in particular, that in which the tree growth starts with heuristics and ends with backtracking, has achieved an accuracy similar to that of backtracking and within a reasonable computational time. The contribution of the paper could be of special interest for industrial engineers interested in measuring efficiency and productivity of industrial processes in many sectors, such as energy, agri-food or service industries." @default.
- W3124222757 created "2021-02-01" @default.
- W3124222757 creator A5001860877 @default.
- W3124222757 creator A5018855101 @default.
- W3124222757 creator A5035640046 @default.
- W3124222757 creator A5064189227 @default.
- W3124222757 date "2021-01-01" @default.
- W3124222757 modified "2023-10-03" @default.
- W3124222757 title "Heuristic and Backtracking Algorithms for Improving the Performance of Efficiency Analysis Trees" @default.
- W3124222757 cites W1536484404 @default.
- W3124222757 cites W180405720 @default.
- W3124222757 cites W1974899953 @default.
- W3124222757 cites W1975935631 @default.
- W3124222757 cites W1983961430 @default.
- W3124222757 cites W2027290667 @default.
- W3124222757 cites W2033834012 @default.
- W3124222757 cites W2043425503 @default.
- W3124222757 cites W2076452041 @default.
- W3124222757 cites W2113905824 @default.
- W3124222757 cites W2117897510 @default.
- W3124222757 cites W2118382442 @default.
- W3124222757 cites W2129763896 @default.
- W3124222757 cites W2134675596 @default.
- W3124222757 cites W2137994820 @default.
- W3124222757 cites W2162180338 @default.
- W3124222757 cites W2164053046 @default.
- W3124222757 cites W2606465144 @default.
- W3124222757 cites W2899304741 @default.
- W3124222757 cites W2914278889 @default.
- W3124222757 cites W2953542916 @default.
- W3124222757 cites W3005870135 @default.
- W3124222757 cites W3044090530 @default.
- W3124222757 cites W3045882059 @default.
- W3124222757 cites W3084138263 @default.
- W3124222757 cites W3121991191 @default.
- W3124222757 cites W3124541731 @default.
- W3124222757 cites W3152643265 @default.
- W3124222757 doi "https://doi.org/10.1109/access.2021.3054006" @default.
- W3124222757 hasPublicationYear "2021" @default.
- W3124222757 type Work @default.
- W3124222757 sameAs 3124222757 @default.
- W3124222757 citedByCount "10" @default.
- W3124222757 countsByYear W31242227572021 @default.
- W3124222757 countsByYear W31242227572022 @default.
- W3124222757 countsByYear W31242227572023 @default.
- W3124222757 crossrefType "journal-article" @default.
- W3124222757 hasAuthorship W3124222757A5001860877 @default.
- W3124222757 hasAuthorship W3124222757A5018855101 @default.
- W3124222757 hasAuthorship W3124222757A5035640046 @default.
- W3124222757 hasAuthorship W3124222757A5064189227 @default.
- W3124222757 hasBestOaLocation W31242227571 @default.
- W3124222757 hasConcept C111335779 @default.
- W3124222757 hasConcept C111919701 @default.
- W3124222757 hasConcept C113174947 @default.
- W3124222757 hasConcept C11413529 @default.
- W3124222757 hasConcept C119857082 @default.
- W3124222757 hasConcept C126255220 @default.
- W3124222757 hasConcept C127705205 @default.
- W3124222757 hasConcept C134306372 @default.
- W3124222757 hasConcept C154945302 @default.
- W3124222757 hasConcept C156884757 @default.
- W3124222757 hasConcept C173801870 @default.
- W3124222757 hasConcept C2524010 @default.
- W3124222757 hasConcept C33923547 @default.
- W3124222757 hasConcept C41008148 @default.
- W3124222757 hasConceptScore W3124222757C111335779 @default.
- W3124222757 hasConceptScore W3124222757C111919701 @default.
- W3124222757 hasConceptScore W3124222757C113174947 @default.
- W3124222757 hasConceptScore W3124222757C11413529 @default.
- W3124222757 hasConceptScore W3124222757C119857082 @default.
- W3124222757 hasConceptScore W3124222757C126255220 @default.
- W3124222757 hasConceptScore W3124222757C127705205 @default.
- W3124222757 hasConceptScore W3124222757C134306372 @default.
- W3124222757 hasConceptScore W3124222757C154945302 @default.
- W3124222757 hasConceptScore W3124222757C156884757 @default.
- W3124222757 hasConceptScore W3124222757C173801870 @default.
- W3124222757 hasConceptScore W3124222757C2524010 @default.
- W3124222757 hasConceptScore W3124222757C33923547 @default.
- W3124222757 hasConceptScore W3124222757C41008148 @default.
- W3124222757 hasFunder F4320315062 @default.
- W3124222757 hasFunder F4320322930 @default.
- W3124222757 hasLocation W31242227571 @default.
- W3124222757 hasOpenAccess W3124222757 @default.
- W3124222757 hasPrimaryLocation W31242227571 @default.
- W3124222757 hasRelatedWork W1581598469 @default.
- W3124222757 hasRelatedWork W2003480636 @default.
- W3124222757 hasRelatedWork W2031409011 @default.
- W3124222757 hasRelatedWork W2080085332 @default.
- W3124222757 hasRelatedWork W2106773972 @default.
- W3124222757 hasRelatedWork W2140318223 @default.
- W3124222757 hasRelatedWork W2165127677 @default.
- W3124222757 hasRelatedWork W2774921197 @default.
- W3124222757 hasRelatedWork W3122566932 @default.
- W3124222757 hasRelatedWork W2563968215 @default.
- W3124222757 hasVolume "9" @default.
- W3124222757 isParatext "false" @default.
- W3124222757 isRetracted "false" @default.
- W3124222757 magId "3124222757" @default.