Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124254264> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3124254264 abstract "Abstract Two‐dimensional hydrodynamic models numerically solve full Shallow Water Equations (SWEs). Despite their high accuracy, these models have long simulation run times and therefore are of limited use for exploratory or real‐time flood predictions. We investigated the possibility of improving flood modelling speed using Machine Learning (ML). We propose a new method that replaces the computationally expensive parts of the hydrodynamic models with simple and efficient data‐driven approximations. Our hypothesis is that by integrating ML with physics‐based numerical methods, we can achieve improved generalization performance: that is, the trained model for one case study can be used in other studies without the need for new training. We tested two ML approaches: for the first, we integrated curve fitting, and, for the second, artificial neural networks (ANN) with a finite volume scheme to solve the local inertial approximation of the SWEs. The data‐driven models approximated the Momentum Equation, which explicitly solved the time derivative of flow rates. Water depths were then updated by applying a water balance equation. We also tested two different training datasets: the simulated dataset, generated from the results of hydrodynamic model, and the random dataset, generated by directly solving the momentum equation on randomly sampled input data. Various combinations of input features, for example, water slope and depth, were explored. The proposed models were trained in a small hypothetical case and tested in a different hypothetical and in two real case studies. Results showed that the curve‐fitting method can be implemented successfully, given sufficient training and input data. The ANN model trained with a random dataset was substantially more accurate than that of the model trained with the simulated dataset. However, it was not successful in the real case studies. The curve‐fitting method resulted in better generalization performance and increased the simulation speed of the local inertial model by 23%. Future research should test the performance of ML in terms of an increase in stable time step size and approximation of the full SWEs." @default.
- W3124254264 created "2021-02-01" @default.
- W3124254264 creator A5006292900 @default.
- W3124254264 creator A5039791787 @default.
- W3124254264 creator A5040557342 @default.
- W3124254264 creator A5065297653 @default.
- W3124254264 creator A5079126989 @default.
- W3124254264 date "2021-04-01" @default.
- W3124254264 modified "2023-10-15" @default.
- W3124254264 title "Machine learning for accelerating <scp>2D</scp> flood models: Potential and challenges" @default.
- W3124254264 cites W1894267360 @default.
- W3124254264 cites W1971520515 @default.
- W3124254264 cites W1988115241 @default.
- W3124254264 cites W2055668893 @default.
- W3124254264 cites W2064184119 @default.
- W3124254264 cites W2068470708 @default.
- W3124254264 cites W2101044141 @default.
- W3124254264 cites W2166309152 @default.
- W3124254264 cites W2321245920 @default.
- W3124254264 cites W2491660085 @default.
- W3124254264 cites W2564026245 @default.
- W3124254264 cites W2612221315 @default.
- W3124254264 cites W2886751985 @default.
- W3124254264 cites W2945377681 @default.
- W3124254264 cites W2948264248 @default.
- W3124254264 cites W2994406538 @default.
- W3124254264 cites W3025645353 @default.
- W3124254264 cites W3100968477 @default.
- W3124254264 cites W3104693082 @default.
- W3124254264 cites W3113116348 @default.
- W3124254264 doi "https://doi.org/10.1002/hyp.14064" @default.
- W3124254264 hasPublicationYear "2021" @default.
- W3124254264 type Work @default.
- W3124254264 sameAs 3124254264 @default.
- W3124254264 citedByCount "10" @default.
- W3124254264 countsByYear W31242542642021 @default.
- W3124254264 countsByYear W31242542642022 @default.
- W3124254264 countsByYear W31242542642023 @default.
- W3124254264 crossrefType "journal-article" @default.
- W3124254264 hasAuthorship W3124254264A5006292900 @default.
- W3124254264 hasAuthorship W3124254264A5039791787 @default.
- W3124254264 hasAuthorship W3124254264A5040557342 @default.
- W3124254264 hasAuthorship W3124254264A5065297653 @default.
- W3124254264 hasAuthorship W3124254264A5079126989 @default.
- W3124254264 hasBestOaLocation W31242542642 @default.
- W3124254264 hasConcept C10138342 @default.
- W3124254264 hasConcept C11413529 @default.
- W3124254264 hasConcept C119857082 @default.
- W3124254264 hasConcept C126255220 @default.
- W3124254264 hasConcept C134306372 @default.
- W3124254264 hasConcept C154945302 @default.
- W3124254264 hasConcept C162324750 @default.
- W3124254264 hasConcept C177148314 @default.
- W3124254264 hasConcept C2524010 @default.
- W3124254264 hasConcept C28826006 @default.
- W3124254264 hasConcept C33923547 @default.
- W3124254264 hasConcept C38349280 @default.
- W3124254264 hasConcept C41008148 @default.
- W3124254264 hasConcept C50644808 @default.
- W3124254264 hasConcept C60718061 @default.
- W3124254264 hasConceptScore W3124254264C10138342 @default.
- W3124254264 hasConceptScore W3124254264C11413529 @default.
- W3124254264 hasConceptScore W3124254264C119857082 @default.
- W3124254264 hasConceptScore W3124254264C126255220 @default.
- W3124254264 hasConceptScore W3124254264C134306372 @default.
- W3124254264 hasConceptScore W3124254264C154945302 @default.
- W3124254264 hasConceptScore W3124254264C162324750 @default.
- W3124254264 hasConceptScore W3124254264C177148314 @default.
- W3124254264 hasConceptScore W3124254264C2524010 @default.
- W3124254264 hasConceptScore W3124254264C28826006 @default.
- W3124254264 hasConceptScore W3124254264C33923547 @default.
- W3124254264 hasConceptScore W3124254264C38349280 @default.
- W3124254264 hasConceptScore W3124254264C41008148 @default.
- W3124254264 hasConceptScore W3124254264C50644808 @default.
- W3124254264 hasConceptScore W3124254264C60718061 @default.
- W3124254264 hasFunder F4320334704 @default.
- W3124254264 hasIssue "4" @default.
- W3124254264 hasLocation W31242542641 @default.
- W3124254264 hasLocation W31242542642 @default.
- W3124254264 hasOpenAccess W3124254264 @default.
- W3124254264 hasPrimaryLocation W31242542641 @default.
- W3124254264 hasRelatedWork W2885094885 @default.
- W3124254264 hasRelatedWork W2961085424 @default.
- W3124254264 hasRelatedWork W3046775127 @default.
- W3124254264 hasRelatedWork W3170094116 @default.
- W3124254264 hasRelatedWork W4205958290 @default.
- W3124254264 hasRelatedWork W4285260836 @default.
- W3124254264 hasRelatedWork W4286629047 @default.
- W3124254264 hasRelatedWork W4306321456 @default.
- W3124254264 hasRelatedWork W4306674287 @default.
- W3124254264 hasRelatedWork W4224009465 @default.
- W3124254264 hasVolume "35" @default.
- W3124254264 isParatext "false" @default.
- W3124254264 isRetracted "false" @default.
- W3124254264 magId "3124254264" @default.
- W3124254264 workType "article" @default.