Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124273757> ?p ?o ?g. }
- W3124273757 endingPage "18" @default.
- W3124273757 startingPage "1" @default.
- W3124273757 abstract "We conducted a national survey on a high-quality internet panel to study landscape preferences in Norway, using photos as stimuli. We examined preference heterogeneity with respect to socio-demographic characteristics and latent topics brought up by the respondents, using ordinal logistic regression and structural topic modelling (STM), a machine learning-based analysis. We found that pasture landscapes are the most favoured (55%), while densely planted spruce forests are the least favoured (8%). The contrast was particularly strong between eastern and western Norway, between men and women, and between young and old. STM revealed that the choices were mainly driven by the preference for landscape openness, especially by women. Other important drivers were concerns regarding reforestation of former farmlands, aesthetic properties, forest management, biodiversity issues, and cultural values. Our results suggest that landscape policies may clash with socio-cultural preferences, and failure to account for these may undermine the success of a policy." @default.
- W3124273757 created "2021-02-01" @default.
- W3124273757 creator A5020608558 @default.
- W3124273757 creator A5033052811 @default.
- W3124273757 creator A5044293223 @default.
- W3124273757 creator A5063505229 @default.
- W3124273757 creator A5072422929 @default.
- W3124273757 creator A5072870799 @default.
- W3124273757 creator A5074437857 @default.
- W3124273757 date "2021-01-19" @default.
- W3124273757 modified "2023-10-04" @default.
- W3124273757 title "Explaining landscape preference heterogeneity using machine learning-based survey analysis" @default.
- W3124273757 cites W1036931427 @default.
- W3124273757 cites W1209234837 @default.
- W3124273757 cites W1874733294 @default.
- W3124273757 cites W1964979796 @default.
- W3124273757 cites W1965193496 @default.
- W3124273757 cites W1974622258 @default.
- W3124273757 cites W1983928958 @default.
- W3124273757 cites W1989143359 @default.
- W3124273757 cites W2003643679 @default.
- W3124273757 cites W2010370563 @default.
- W3124273757 cites W2032582545 @default.
- W3124273757 cites W2036760816 @default.
- W3124273757 cites W2045345649 @default.
- W3124273757 cites W2063529155 @default.
- W3124273757 cites W2069755857 @default.
- W3124273757 cites W2078652486 @default.
- W3124273757 cites W2080146321 @default.
- W3124273757 cites W2096974619 @default.
- W3124273757 cites W2116486801 @default.
- W3124273757 cites W2118039619 @default.
- W3124273757 cites W2118565579 @default.
- W3124273757 cites W2124971928 @default.
- W3124273757 cites W2124981209 @default.
- W3124273757 cites W2126807068 @default.
- W3124273757 cites W2144449396 @default.
- W3124273757 cites W2200369057 @default.
- W3124273757 cites W2268188108 @default.
- W3124273757 cites W2306119308 @default.
- W3124273757 cites W2512237447 @default.
- W3124273757 cites W2571577534 @default.
- W3124273757 cites W2588325114 @default.
- W3124273757 cites W2597608082 @default.
- W3124273757 cites W2766858368 @default.
- W3124273757 cites W2767613679 @default.
- W3124273757 cites W2895553377 @default.
- W3124273757 cites W2953440448 @default.
- W3124273757 cites W2997076804 @default.
- W3124273757 cites W4255063892 @default.
- W3124273757 doi "https://doi.org/10.1080/01426397.2020.1867713" @default.
- W3124273757 hasPublicationYear "2021" @default.
- W3124273757 type Work @default.
- W3124273757 sameAs 3124273757 @default.
- W3124273757 citedByCount "9" @default.
- W3124273757 countsByYear W31242737572021 @default.
- W3124273757 countsByYear W31242737572022 @default.
- W3124273757 countsByYear W31242737572023 @default.
- W3124273757 crossrefType "journal-article" @default.
- W3124273757 hasAuthorship W3124273757A5020608558 @default.
- W3124273757 hasAuthorship W3124273757A5033052811 @default.
- W3124273757 hasAuthorship W3124273757A5044293223 @default.
- W3124273757 hasAuthorship W3124273757A5063505229 @default.
- W3124273757 hasAuthorship W3124273757A5072422929 @default.
- W3124273757 hasAuthorship W3124273757A5072870799 @default.
- W3124273757 hasAuthorship W3124273757A5074437857 @default.
- W3124273757 hasBestOaLocation W31242737571 @default.
- W3124273757 hasConcept C107826830 @default.
- W3124273757 hasConcept C110313322 @default.
- W3124273757 hasConcept C111472728 @default.
- W3124273757 hasConcept C119857082 @default.
- W3124273757 hasConcept C130217890 @default.
- W3124273757 hasConcept C138885662 @default.
- W3124273757 hasConcept C154575652 @default.
- W3124273757 hasConcept C15744967 @default.
- W3124273757 hasConcept C162324750 @default.
- W3124273757 hasConcept C175444787 @default.
- W3124273757 hasConcept C18903297 @default.
- W3124273757 hasConcept C205649164 @default.
- W3124273757 hasConcept C2779530757 @default.
- W3124273757 hasConcept C2781249084 @default.
- W3124273757 hasConcept C41008148 @default.
- W3124273757 hasConcept C77805123 @default.
- W3124273757 hasConcept C84976871 @default.
- W3124273757 hasConcept C86803240 @default.
- W3124273757 hasConcept C87227347 @default.
- W3124273757 hasConcept C97137747 @default.
- W3124273757 hasConceptScore W3124273757C107826830 @default.
- W3124273757 hasConceptScore W3124273757C110313322 @default.
- W3124273757 hasConceptScore W3124273757C111472728 @default.
- W3124273757 hasConceptScore W3124273757C119857082 @default.
- W3124273757 hasConceptScore W3124273757C130217890 @default.
- W3124273757 hasConceptScore W3124273757C138885662 @default.
- W3124273757 hasConceptScore W3124273757C154575652 @default.
- W3124273757 hasConceptScore W3124273757C15744967 @default.
- W3124273757 hasConceptScore W3124273757C162324750 @default.
- W3124273757 hasConceptScore W3124273757C175444787 @default.
- W3124273757 hasConceptScore W3124273757C18903297 @default.