Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124283074> ?p ?o ?g. }
- W3124283074 abstract "In current seismic acquisition practice, there is an increasing drive for sparsely (in space) acquired data, often in irregular geometry. These surveys can trade off subsurface information for efficiency/cost - creating a problem of seismic that can greatly hinder subsequent processing and interpretation. Reconstruction of regularly sampled dense data from highly sparse, irregular data can therefore aid in processing and interpretation of these far sparser, more efficient seismic surveys. Here, two methods are compared to solve the reconstruction problem in both space-time and wavenumber-frequency domain. This requires an operator that maps sparse to dense data: the operator is generally unknown, being the inverse of a known data sampling operator. As such, here the deterministic inversion is efficiently solved by least squares optimisation using a numerically efficient Python-based linear operator representation. An alternative approach is probabilistic and uses deep learning. Here, two deep learning architectures are benchmarked against each other and the deterministic approach; a Recurrent Inference Machine (RIM), which is designed specifically to solve inverse problems given known forward operators, and the well-known U-Net. The trained deep learning networks are capable of successfully mapping sparse to dense seismic data for a range of different datasets and decimation percentages, thereby significantly reducing spatial aliasing in the wavenumber-frequency domain. The deterministic inversion on the contrary, could not reconstruct the missing data and thus did not reduce the undesired spatial aliasing. Results show that the application of Deep Learning for seismic reconstruction is promising, but the treatment of large-volume, multi-component seismic datasets will require dedicated learning architectures not yet realisable with existing tools." @default.
- W3124283074 created "2021-02-01" @default.
- W3124283074 creator A5005167857 @default.
- W3124283074 creator A5036018701 @default.
- W3124283074 creator A5049283332 @default.
- W3124283074 date "2021-01-23" @default.
- W3124283074 modified "2023-09-27" @default.
- W3124283074 title "Reconstructing missing seismic data using Deep Learning" @default.
- W3124283074 cites W142830878 @default.
- W3124283074 cites W2032473164 @default.
- W3124283074 cites W2902216690 @default.
- W3124283074 cites W2910002198 @default.
- W3124283074 cites W2949117887 @default.
- W3124283074 cites W2961960085 @default.
- W3124283074 cites W2970971581 @default.
- W3124283074 cites W2994167575 @default.
- W3124283074 hasPublicationYear "2021" @default.
- W3124283074 type Work @default.
- W3124283074 sameAs 3124283074 @default.
- W3124283074 citedByCount "0" @default.
- W3124283074 crossrefType "posted-content" @default.
- W3124283074 hasAuthorship W3124283074A5005167857 @default.
- W3124283074 hasAuthorship W3124283074A5036018701 @default.
- W3124283074 hasAuthorship W3124283074A5049283332 @default.
- W3124283074 hasConcept C104317684 @default.
- W3124283074 hasConcept C106131492 @default.
- W3124283074 hasConcept C108583219 @default.
- W3124283074 hasConcept C11413529 @default.
- W3124283074 hasConcept C119857082 @default.
- W3124283074 hasConcept C124851039 @default.
- W3124283074 hasConcept C127313418 @default.
- W3124283074 hasConcept C134306372 @default.
- W3124283074 hasConcept C135252773 @default.
- W3124283074 hasConcept C136536468 @default.
- W3124283074 hasConcept C154945302 @default.
- W3124283074 hasConcept C158448853 @default.
- W3124283074 hasConcept C165205528 @default.
- W3124283074 hasConcept C17020691 @default.
- W3124283074 hasConcept C173642442 @default.
- W3124283074 hasConcept C185592680 @default.
- W3124283074 hasConcept C1893757 @default.
- W3124283074 hasConcept C207685749 @default.
- W3124283074 hasConcept C2776214188 @default.
- W3124283074 hasConcept C31972630 @default.
- W3124283074 hasConcept C33923547 @default.
- W3124283074 hasConcept C4069607 @default.
- W3124283074 hasConcept C41008148 @default.
- W3124283074 hasConcept C55493867 @default.
- W3124283074 hasConcept C77928131 @default.
- W3124283074 hasConcept C86339819 @default.
- W3124283074 hasConcept C9357733 @default.
- W3124283074 hasConceptScore W3124283074C104317684 @default.
- W3124283074 hasConceptScore W3124283074C106131492 @default.
- W3124283074 hasConceptScore W3124283074C108583219 @default.
- W3124283074 hasConceptScore W3124283074C11413529 @default.
- W3124283074 hasConceptScore W3124283074C119857082 @default.
- W3124283074 hasConceptScore W3124283074C124851039 @default.
- W3124283074 hasConceptScore W3124283074C127313418 @default.
- W3124283074 hasConceptScore W3124283074C134306372 @default.
- W3124283074 hasConceptScore W3124283074C135252773 @default.
- W3124283074 hasConceptScore W3124283074C136536468 @default.
- W3124283074 hasConceptScore W3124283074C154945302 @default.
- W3124283074 hasConceptScore W3124283074C158448853 @default.
- W3124283074 hasConceptScore W3124283074C165205528 @default.
- W3124283074 hasConceptScore W3124283074C17020691 @default.
- W3124283074 hasConceptScore W3124283074C173642442 @default.
- W3124283074 hasConceptScore W3124283074C185592680 @default.
- W3124283074 hasConceptScore W3124283074C1893757 @default.
- W3124283074 hasConceptScore W3124283074C207685749 @default.
- W3124283074 hasConceptScore W3124283074C2776214188 @default.
- W3124283074 hasConceptScore W3124283074C31972630 @default.
- W3124283074 hasConceptScore W3124283074C33923547 @default.
- W3124283074 hasConceptScore W3124283074C4069607 @default.
- W3124283074 hasConceptScore W3124283074C41008148 @default.
- W3124283074 hasConceptScore W3124283074C55493867 @default.
- W3124283074 hasConceptScore W3124283074C77928131 @default.
- W3124283074 hasConceptScore W3124283074C86339819 @default.
- W3124283074 hasConceptScore W3124283074C9357733 @default.
- W3124283074 hasLocation W31242830741 @default.
- W3124283074 hasOpenAccess W3124283074 @default.
- W3124283074 hasPrimaryLocation W31242830741 @default.
- W3124283074 hasRelatedWork W1530055097 @default.
- W3124283074 hasRelatedWork W2013211738 @default.
- W3124283074 hasRelatedWork W2088135680 @default.
- W3124283074 hasRelatedWork W2161103889 @default.
- W3124283074 hasRelatedWork W2183753900 @default.
- W3124283074 hasRelatedWork W2323291606 @default.
- W3124283074 hasRelatedWork W2324657801 @default.
- W3124283074 hasRelatedWork W2327447414 @default.
- W3124283074 hasRelatedWork W2359281009 @default.
- W3124283074 hasRelatedWork W2806093124 @default.
- W3124283074 hasRelatedWork W2974639024 @default.
- W3124283074 hasRelatedWork W2990977638 @default.
- W3124283074 hasRelatedWork W3111789744 @default.
- W3124283074 hasRelatedWork W3123881639 @default.
- W3124283074 hasRelatedWork W3127533769 @default.
- W3124283074 hasRelatedWork W3155245236 @default.
- W3124283074 hasRelatedWork W3161808065 @default.
- W3124283074 hasRelatedWork W56969369 @default.
- W3124283074 hasRelatedWork W780397515 @default.