Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124316020> ?p ?o ?g. }
- W3124316020 abstract "Graph neural networks (GNNs) are powerful models that have been successful in various graph representation learning tasks. Whereas gradient boosted decision trees (GBDT) often outperform other machine learning methods when faced with heterogeneous tabular data. But what approach should be used for graphs with tabular node features? Previous GNN models have mostly focused on networks with homogeneous sparse features and, as we show, are suboptimal in the heterogeneous setting. In this work, we propose a novel architecture that trains GBDT and GNN jointly to get the best of both worlds: the GBDT model deals with heterogeneous features, while GNN accounts for the graph structure. Our model benefits from end-to-end optimization by allowing new trees to fit the gradient updates of GNN. With an extensive experimental comparison to the leading GBDT and GNN models, we demonstrate a significant increase in performance on a variety of graphs with tabular features. The code is available: this https URL." @default.
- W3124316020 created "2021-02-01" @default.
- W3124316020 creator A5025813785 @default.
- W3124316020 creator A5038638877 @default.
- W3124316020 date "2021-01-21" @default.
- W3124316020 modified "2023-09-26" @default.
- W3124316020 title "Boost then Convolve: Gradient Boosting Meets Graph Neural Networks" @default.
- W3124316020 cites W1678356000 @default.
- W3124316020 cites W2023320048 @default.
- W3124316020 cites W2768348081 @default.
- W3124316020 cites W2787705367 @default.
- W3124316020 cites W2787740662 @default.
- W3124316020 cites W2805516822 @default.
- W3124316020 cites W2808986925 @default.
- W3124316020 cites W2900763475 @default.
- W3124316020 cites W2918342466 @default.
- W3124316020 cites W2947404296 @default.
- W3124316020 cites W2950858167 @default.
- W3124316020 cites W2962988969 @default.
- W3124316020 cites W2963285578 @default.
- W3124316020 cites W2963793535 @default.
- W3124316020 cites W2964015378 @default.
- W3124316020 cites W2964022491 @default.
- W3124316020 cites W2967728833 @default.
- W3124316020 cites W2969724595 @default.
- W3124316020 cites W2971078096 @default.
- W3124316020 cites W2975966238 @default.
- W3124316020 cites W2981084009 @default.
- W3124316020 cites W2989985603 @default.
- W3124316020 cites W2994764939 @default.
- W3124316020 cites W2994872359 @default.
- W3124316020 cites W2994958563 @default.
- W3124316020 cites W2995329413 @default.
- W3124316020 cites W2996604169 @default.
- W3124316020 cites W3007309629 @default.
- W3124316020 cites W3007407495 @default.
- W3124316020 cites W3007817167 @default.
- W3124316020 cites W3007872010 @default.
- W3124316020 cites W3009304813 @default.
- W3124316020 cites W3012644407 @default.
- W3124316020 cites W3016099278 @default.
- W3124316020 cites W3034933916 @default.
- W3124316020 cites W3035909655 @default.
- W3124316020 cites W3080884086 @default.
- W3124316020 cites W3100078588 @default.
- W3124316020 cites W3101704389 @default.
- W3124316020 hasPublicationYear "2021" @default.
- W3124316020 type Work @default.
- W3124316020 sameAs 3124316020 @default.
- W3124316020 citedByCount "1" @default.
- W3124316020 countsByYear W31243160202022 @default.
- W3124316020 crossrefType "posted-content" @default.
- W3124316020 hasAuthorship W3124316020A5025813785 @default.
- W3124316020 hasAuthorship W3124316020A5038638877 @default.
- W3124316020 hasConcept C10229987 @default.
- W3124316020 hasConcept C114614502 @default.
- W3124316020 hasConcept C119857082 @default.
- W3124316020 hasConcept C120136583 @default.
- W3124316020 hasConcept C132525143 @default.
- W3124316020 hasConcept C154945302 @default.
- W3124316020 hasConcept C169258074 @default.
- W3124316020 hasConcept C33923547 @default.
- W3124316020 hasConcept C41008148 @default.
- W3124316020 hasConcept C46686674 @default.
- W3124316020 hasConcept C50644808 @default.
- W3124316020 hasConcept C5481197 @default.
- W3124316020 hasConcept C66882249 @default.
- W3124316020 hasConcept C70153297 @default.
- W3124316020 hasConcept C80444323 @default.
- W3124316020 hasConcept C84525736 @default.
- W3124316020 hasConceptScore W3124316020C10229987 @default.
- W3124316020 hasConceptScore W3124316020C114614502 @default.
- W3124316020 hasConceptScore W3124316020C119857082 @default.
- W3124316020 hasConceptScore W3124316020C120136583 @default.
- W3124316020 hasConceptScore W3124316020C132525143 @default.
- W3124316020 hasConceptScore W3124316020C154945302 @default.
- W3124316020 hasConceptScore W3124316020C169258074 @default.
- W3124316020 hasConceptScore W3124316020C33923547 @default.
- W3124316020 hasConceptScore W3124316020C41008148 @default.
- W3124316020 hasConceptScore W3124316020C46686674 @default.
- W3124316020 hasConceptScore W3124316020C50644808 @default.
- W3124316020 hasConceptScore W3124316020C5481197 @default.
- W3124316020 hasConceptScore W3124316020C66882249 @default.
- W3124316020 hasConceptScore W3124316020C70153297 @default.
- W3124316020 hasConceptScore W3124316020C80444323 @default.
- W3124316020 hasConceptScore W3124316020C84525736 @default.
- W3124316020 hasLocation W31243160201 @default.
- W3124316020 hasOpenAccess W3124316020 @default.
- W3124316020 hasPrimaryLocation W31243160201 @default.
- W3124316020 hasRelatedWork W2106922081 @default.
- W3124316020 hasRelatedWork W2911484737 @default.
- W3124316020 hasRelatedWork W2940562175 @default.
- W3124316020 hasRelatedWork W2955530511 @default.
- W3124316020 hasRelatedWork W2971564650 @default.
- W3124316020 hasRelatedWork W2997992893 @default.
- W3124316020 hasRelatedWork W3005971166 @default.
- W3124316020 hasRelatedWork W3031836101 @default.
- W3124316020 hasRelatedWork W3082448434 @default.
- W3124316020 hasRelatedWork W3087896801 @default.
- W3124316020 hasRelatedWork W3093792086 @default.