Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124345384> ?p ?o ?g. }
- W3124345384 endingPage "310" @default.
- W3124345384 startingPage "310" @default.
- W3124345384 abstract "Weeds are one of the main factors affecting the yield and quality of agricultural products. Accurate evaluation of weed density is of great significance for field management, especially precision weeding. In this paper, a weed density calculating and mapping method in the field is proposed. An unmanned aerial vehicle (UAV) was used to capture field images. The excess green minus excess red index, combined with the minimum error threshold segmentation method, was used to segment green plants and bare land. A modified U-net was used to segment crops from images. After removing the bare land and crops from the field, images of weeds were obtained. The weed density was evaluated by the ratio of weed area to total area on the segmented image. The accuracy of the green plant segmentation was 93.5%. In terms of crop segmentation, the intersection over union (IoU) was 93.40%, and the segmentation time of a single image was 35.90 ms. Finally, the determination coefficient of the UAV evaluated weed density and the manually observed weed density was 0.94, and the root mean square error was 0.03. With the proposed method, the weed density of a field can be effectively evaluated from UAV images, hence providing critical information for precision weeding." @default.
- W3124345384 created "2021-02-01" @default.
- W3124345384 creator A5007916294 @default.
- W3124345384 creator A5020768269 @default.
- W3124345384 creator A5061063491 @default.
- W3124345384 creator A5080315599 @default.
- W3124345384 creator A5080726596 @default.
- W3124345384 date "2021-01-18" @default.
- W3124345384 modified "2023-10-16" @default.
- W3124345384 title "A Field Weed Density Evaluation Method Based on UAV Imaging and Modified U-Net" @default.
- W3124345384 cites W1200922351 @default.
- W3124345384 cites W1594573182 @default.
- W3124345384 cites W1998685830 @default.
- W3124345384 cites W2013011639 @default.
- W3124345384 cites W2016718980 @default.
- W3124345384 cites W2035759078 @default.
- W3124345384 cites W2058679530 @default.
- W3124345384 cites W2128866545 @default.
- W3124345384 cites W2178852775 @default.
- W3124345384 cites W2394911398 @default.
- W3124345384 cites W2412782625 @default.
- W3124345384 cites W2524954406 @default.
- W3124345384 cites W2550872734 @default.
- W3124345384 cites W2603228623 @default.
- W3124345384 cites W2751440609 @default.
- W3124345384 cites W2753403518 @default.
- W3124345384 cites W2782347622 @default.
- W3124345384 cites W2790979755 @default.
- W3124345384 cites W2791322423 @default.
- W3124345384 cites W2799521659 @default.
- W3124345384 cites W2800002789 @default.
- W3124345384 cites W2804279544 @default.
- W3124345384 cites W2811217578 @default.
- W3124345384 cites W2894587475 @default.
- W3124345384 cites W2913227116 @default.
- W3124345384 cites W2920527275 @default.
- W3124345384 cites W2921277556 @default.
- W3124345384 cites W2924759635 @default.
- W3124345384 cites W2953686964 @default.
- W3124345384 cites W2963881378 @default.
- W3124345384 cites W2978860639 @default.
- W3124345384 cites W2990296407 @default.
- W3124345384 cites W3011520619 @default.
- W3124345384 cites W3012177467 @default.
- W3124345384 cites W3014443006 @default.
- W3124345384 cites W3014601011 @default.
- W3124345384 cites W3083793552 @default.
- W3124345384 cites W3092288622 @default.
- W3124345384 cites W3092546066 @default.
- W3124345384 cites W3106853297 @default.
- W3124345384 doi "https://doi.org/10.3390/rs13020310" @default.
- W3124345384 hasPublicationYear "2021" @default.
- W3124345384 type Work @default.
- W3124345384 sameAs 3124345384 @default.
- W3124345384 citedByCount "22" @default.
- W3124345384 countsByYear W31243453842021 @default.
- W3124345384 countsByYear W31243453842022 @default.
- W3124345384 countsByYear W31243453842023 @default.
- W3124345384 crossrefType "journal-article" @default.
- W3124345384 hasAuthorship W3124345384A5007916294 @default.
- W3124345384 hasAuthorship W3124345384A5020768269 @default.
- W3124345384 hasAuthorship W3124345384A5061063491 @default.
- W3124345384 hasAuthorship W3124345384A5080315599 @default.
- W3124345384 hasAuthorship W3124345384A5080726596 @default.
- W3124345384 hasBestOaLocation W31243453841 @default.
- W3124345384 hasConcept C118518473 @default.
- W3124345384 hasConcept C120217122 @default.
- W3124345384 hasConcept C154945302 @default.
- W3124345384 hasConcept C166957645 @default.
- W3124345384 hasConcept C202444582 @default.
- W3124345384 hasConcept C205649164 @default.
- W3124345384 hasConcept C2775891814 @default.
- W3124345384 hasConcept C33923547 @default.
- W3124345384 hasConcept C41008148 @default.
- W3124345384 hasConcept C6557445 @default.
- W3124345384 hasConcept C86803240 @default.
- W3124345384 hasConcept C89600930 @default.
- W3124345384 hasConcept C9652623 @default.
- W3124345384 hasConceptScore W3124345384C118518473 @default.
- W3124345384 hasConceptScore W3124345384C120217122 @default.
- W3124345384 hasConceptScore W3124345384C154945302 @default.
- W3124345384 hasConceptScore W3124345384C166957645 @default.
- W3124345384 hasConceptScore W3124345384C202444582 @default.
- W3124345384 hasConceptScore W3124345384C205649164 @default.
- W3124345384 hasConceptScore W3124345384C2775891814 @default.
- W3124345384 hasConceptScore W3124345384C33923547 @default.
- W3124345384 hasConceptScore W3124345384C41008148 @default.
- W3124345384 hasConceptScore W3124345384C6557445 @default.
- W3124345384 hasConceptScore W3124345384C86803240 @default.
- W3124345384 hasConceptScore W3124345384C89600930 @default.
- W3124345384 hasConceptScore W3124345384C9652623 @default.
- W3124345384 hasFunder F4320335777 @default.
- W3124345384 hasIssue "2" @default.
- W3124345384 hasLocation W31243453841 @default.
- W3124345384 hasLocation W31243453842 @default.
- W3124345384 hasLocation W31243453843 @default.
- W3124345384 hasOpenAccess W3124345384 @default.
- W3124345384 hasPrimaryLocation W31243453841 @default.