Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124369533> ?p ?o ?g. }
- W3124369533 endingPage "15303" @default.
- W3124369533 startingPage "15295" @default.
- W3124369533 abstract "Ear-electroencephalography (ear-EEG) using electrodes placed above hairless areas around ears is a convenient and comfortable method for signal recording in practical applications of steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI). However, due to the constraint of electrode distribution behind the ear, the amplitude of SSVEP in ear-EEG signals is relatively low, which hinders the application of ear-EEG in SSVEP-based BCI. This study was aimed to improve the performance of ear-EEG in SSVEP-based BCI through re-implementing a compact convolutional neural network (EEGNet) with ensemble learning. We first evaluated the feasibility of applying widely used EEGNet models with different kernel numbers to decode SSVEP in ear-EEG signals. Then we applied an ensemble learning strategy to combine EEGNet models with different kernel numbers to improve the classification of ear-EEG signals. The ear-EEG data was from an open dataset, which acquired three sessions of SSVEP data induced by three flicker stimuli from eleven subjects. The average accuracy of EEGNet with ensemble learning for ear-EEG signals in cross-session validations at 1 s window length was 81.12% (from session 1 to session 2) and 81.74% (from session 1 to session 3), which significantly outperformed canonical correlation analysis (CCA). In addition, the network visualization indicated that EEGNet extracted features related to stimulation frequencies. The results showed promise for accurate classification of SSVEP in ear-EEG signals using deep learning models with strategies, helping to promote the SSVEP based BCI from laboratory to practical application." @default.
- W3124369533 created "2021-02-01" @default.
- W3124369533 creator A5016647517 @default.
- W3124369533 creator A5026898804 @default.
- W3124369533 creator A5060002817 @default.
- W3124369533 creator A5071317221 @default.
- W3124369533 date "2021-01-01" @default.
- W3124369533 modified "2023-10-14" @default.
- W3124369533 title "EEGNet With Ensemble Learning to Improve the Cross-Session Classification of SSVEP Based BCI From Ear-EEG" @default.
- W3124369533 cites W2044455804 @default.
- W3124369533 cites W2055264244 @default.
- W3124369533 cites W2065613910 @default.
- W3124369533 cites W2066435223 @default.
- W3124369533 cites W2098100592 @default.
- W3124369533 cites W2105478324 @default.
- W3124369533 cites W2106006415 @default.
- W3124369533 cites W2145302786 @default.
- W3124369533 cites W2168572392 @default.
- W3124369533 cites W2414977329 @default.
- W3124369533 cites W2527878485 @default.
- W3124369533 cites W2531409750 @default.
- W3124369533 cites W2590420622 @default.
- W3124369533 cites W2741907166 @default.
- W3124369533 cites W2792885690 @default.
- W3124369533 cites W2797694788 @default.
- W3124369533 cites W2799439111 @default.
- W3124369533 cites W2905523904 @default.
- W3124369533 cites W2915893085 @default.
- W3124369533 cites W2921231825 @default.
- W3124369533 cites W2944495915 @default.
- W3124369533 cites W2961557730 @default.
- W3124369533 cites W2963355311 @default.
- W3124369533 cites W3101684563 @default.
- W3124369533 cites W3102455230 @default.
- W3124369533 doi "https://doi.org/10.1109/access.2021.3052656" @default.
- W3124369533 hasPublicationYear "2021" @default.
- W3124369533 type Work @default.
- W3124369533 sameAs 3124369533 @default.
- W3124369533 citedByCount "23" @default.
- W3124369533 countsByYear W31243695332021 @default.
- W3124369533 countsByYear W31243695332022 @default.
- W3124369533 countsByYear W31243695332023 @default.
- W3124369533 crossrefType "journal-article" @default.
- W3124369533 hasAuthorship W3124369533A5016647517 @default.
- W3124369533 hasAuthorship W3124369533A5026898804 @default.
- W3124369533 hasAuthorship W3124369533A5060002817 @default.
- W3124369533 hasAuthorship W3124369533A5071317221 @default.
- W3124369533 hasBestOaLocation W31243695331 @default.
- W3124369533 hasConcept C12267149 @default.
- W3124369533 hasConcept C136764020 @default.
- W3124369533 hasConcept C153180895 @default.
- W3124369533 hasConcept C153874254 @default.
- W3124369533 hasConcept C154945302 @default.
- W3124369533 hasConcept C15744967 @default.
- W3124369533 hasConcept C169760540 @default.
- W3124369533 hasConcept C173201364 @default.
- W3124369533 hasConcept C2779182362 @default.
- W3124369533 hasConcept C28490314 @default.
- W3124369533 hasConcept C36464697 @default.
- W3124369533 hasConcept C41008148 @default.
- W3124369533 hasConcept C45942800 @default.
- W3124369533 hasConcept C522805319 @default.
- W3124369533 hasConcept C81363708 @default.
- W3124369533 hasConceptScore W3124369533C12267149 @default.
- W3124369533 hasConceptScore W3124369533C136764020 @default.
- W3124369533 hasConceptScore W3124369533C153180895 @default.
- W3124369533 hasConceptScore W3124369533C153874254 @default.
- W3124369533 hasConceptScore W3124369533C154945302 @default.
- W3124369533 hasConceptScore W3124369533C15744967 @default.
- W3124369533 hasConceptScore W3124369533C169760540 @default.
- W3124369533 hasConceptScore W3124369533C173201364 @default.
- W3124369533 hasConceptScore W3124369533C2779182362 @default.
- W3124369533 hasConceptScore W3124369533C28490314 @default.
- W3124369533 hasConceptScore W3124369533C36464697 @default.
- W3124369533 hasConceptScore W3124369533C41008148 @default.
- W3124369533 hasConceptScore W3124369533C45942800 @default.
- W3124369533 hasConceptScore W3124369533C522805319 @default.
- W3124369533 hasConceptScore W3124369533C81363708 @default.
- W3124369533 hasFunder F4320321001 @default.
- W3124369533 hasFunder F4320325104 @default.
- W3124369533 hasFunder F4320335787 @default.
- W3124369533 hasLocation W31243695331 @default.
- W3124369533 hasOpenAccess W3124369533 @default.
- W3124369533 hasPrimaryLocation W31243695331 @default.
- W3124369533 hasRelatedWork W1998344981 @default.
- W3124369533 hasRelatedWork W2158204413 @default.
- W3124369533 hasRelatedWork W2378154655 @default.
- W3124369533 hasRelatedWork W2905894550 @default.
- W3124369533 hasRelatedWork W2917517086 @default.
- W3124369533 hasRelatedWork W3124369533 @default.
- W3124369533 hasRelatedWork W3193301557 @default.
- W3124369533 hasRelatedWork W3217110323 @default.
- W3124369533 hasRelatedWork W4207069095 @default.
- W3124369533 hasRelatedWork W4313203779 @default.
- W3124369533 hasVolume "9" @default.
- W3124369533 isParatext "false" @default.
- W3124369533 isRetracted "false" @default.
- W3124369533 magId "3124369533" @default.