Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124372318> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3124372318 abstract "We consider a setting where agents in a social network take binary actions, which exhibit local strategic complementarities. The agents are a priori uninformed about an underlying payoff-relevant state. An information designer wants to maximize the expected number of agents who take action 1, and she can commit to a signaling mechanism which upon the realization of the state sends an informative signal to all the agents. We study the structure and design of the optimal public signaling mechanisms.We establish that given a signal realization, the set of agents who take action 1 correspond to a k-core of the underlying network, for some k. Using this we show that the designer’s payoff is an increasing step function of the posterior mean her signals induce. We provide a convex optimization formulation and an algorithm that obtain the optimal information structure whenever the designer’s payoff exhibits this structure. The latter structural property is prevalent, thereby making our approach useful well beyond network persuasion. The optimal mechanism is based on a double-interval partition of the set of states. In particular, it associates up to two subintervals of the set of possible state realizations with each k-core. When the state is in these intervals the mechanism publicly reveals this, which induces the agents in k-core to take action 1. We also study a class of random networks with known limiting degree distributions, and provide a framework for obtaining asymptotically optimal public signaling mechanisms for these networks. Our approach relies on characterizing the sizes of the cores of such networks (asymptotically) and uses only the degree distribution of the random networks, thereby making it useful even when the network structure is not fully known. Finally, we explore which networks are more amenable to persuasion, and show that more assortative connection structures lead to larger payoffs for the designer. On the other hand, the dependence of the designer’s payoff to the agents’ degrees can be quite counterintuitive. In particular, we focus on networks sampled uniformly at random from the set of all networks consistent with a degree sequence. We show that when the degrees of some nodes increase, this can reduce the designer’s payoff, despite the increase in the extent of the network externalities." @default.
- W3124372318 created "2021-02-01" @default.
- W3124372318 creator A5001350443 @default.
- W3124372318 date "2019-01-01" @default.
- W3124372318 modified "2023-09-23" @default.
- W3124372318 title "Persuasion in Networks: Public Signals and k-Cores" @default.
- W3124372318 cites W2008620264 @default.
- W3124372318 cites W2079977107 @default.
- W3124372318 cites W2136041258 @default.
- W3124372318 cites W2330524492 @default.
- W3124372318 cites W2387113423 @default.
- W3124372318 cites W2561107390 @default.
- W3124372318 cites W2602384579 @default.
- W3124372318 cites W2613369241 @default.
- W3124372318 cites W2615461813 @default.
- W3124372318 cites W2925044727 @default.
- W3124372318 cites W2946755081 @default.
- W3124372318 cites W2950982035 @default.
- W3124372318 cites W3121310648 @default.
- W3124372318 cites W3121860146 @default.
- W3124372318 cites W3122903325 @default.
- W3124372318 cites W3123076852 @default.
- W3124372318 cites W3123808662 @default.
- W3124372318 cites W3186844096 @default.
- W3124372318 cites W389907844 @default.
- W3124372318 cites W390146837 @default.
- W3124372318 cites W4251543588 @default.
- W3124372318 cites W4255572092 @default.
- W3124372318 doi "https://doi.org/10.2139/ssrn.3346144" @default.
- W3124372318 hasPublicationYear "2019" @default.
- W3124372318 type Work @default.
- W3124372318 sameAs 3124372318 @default.
- W3124372318 citedByCount "4" @default.
- W3124372318 countsByYear W31243723182019 @default.
- W3124372318 countsByYear W31243723182023 @default.
- W3124372318 crossrefType "journal-article" @default.
- W3124372318 hasAuthorship W3124372318A5001350443 @default.
- W3124372318 hasConcept C112698675 @default.
- W3124372318 hasConcept C144133560 @default.
- W3124372318 hasConcept C15744967 @default.
- W3124372318 hasConcept C17744445 @default.
- W3124372318 hasConcept C2781310500 @default.
- W3124372318 hasConcept C41008148 @default.
- W3124372318 hasConcept C77805123 @default.
- W3124372318 hasConceptScore W3124372318C112698675 @default.
- W3124372318 hasConceptScore W3124372318C144133560 @default.
- W3124372318 hasConceptScore W3124372318C15744967 @default.
- W3124372318 hasConceptScore W3124372318C17744445 @default.
- W3124372318 hasConceptScore W3124372318C2781310500 @default.
- W3124372318 hasConceptScore W3124372318C41008148 @default.
- W3124372318 hasConceptScore W3124372318C77805123 @default.
- W3124372318 hasLocation W31243723181 @default.
- W3124372318 hasOpenAccess W3124372318 @default.
- W3124372318 hasPrimaryLocation W31243723181 @default.
- W3124372318 hasRelatedWork W1545929000 @default.
- W3124372318 hasRelatedWork W2075862633 @default.
- W3124372318 hasRelatedWork W2082477038 @default.
- W3124372318 hasRelatedWork W2139164233 @default.
- W3124372318 hasRelatedWork W2322046068 @default.
- W3124372318 hasRelatedWork W2748952813 @default.
- W3124372318 hasRelatedWork W2756091567 @default.
- W3124372318 hasRelatedWork W2899084033 @default.
- W3124372318 hasRelatedWork W2950432847 @default.
- W3124372318 hasRelatedWork W798803109 @default.
- W3124372318 isParatext "false" @default.
- W3124372318 isRetracted "false" @default.
- W3124372318 magId "3124372318" @default.
- W3124372318 workType "article" @default.