Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124389218> ?p ?o ?g. }
- W3124389218 endingPage "917" @default.
- W3124389218 startingPage "908" @default.
- W3124389218 abstract "Circular RNAs (circRNAs) are covalently closed circular structures that can function in various physiological and pathological processes by acting as microRNA (miRNA) sponges, RNA-binding protein (RBP) sponges, mRNA transcriptional regulators, and protein translational templates. circFoxo3 is one of the most studied circRNAs and is generated from the tumor suppressor gene Foxo3. Increasing studies have demonstrated the multiple functions of circFoxo3 in the pathogenesis of different cancer types. circFoxo3 plays important roles in cancer development mainly by binding to various miRNAs. The diagnostic potential of circFoxo3 has been revealed in several cancers. Some research results have been found to contradict the results of other studies, and this may be due to insufficient sample sizes and inconsistencies in the experimental and nomenclature methods. In this review, we systematically summarize current knowledge about the biogenesis and functions of circRNAs, elucidate the roles of circFoxo3 in different cancers, and explore the clinical applications of circFoxo3. Circular RNAs (circRNAs) are covalently closed circular structures that can function in various physiological and pathological processes by acting as microRNA (miRNA) sponges, RNA-binding protein (RBP) sponges, mRNA transcriptional regulators, and protein translational templates. circFoxo3 is one of the most studied circRNAs and is generated from the tumor suppressor gene Foxo3. Increasing studies have demonstrated the multiple functions of circFoxo3 in the pathogenesis of different cancer types. circFoxo3 plays important roles in cancer development mainly by binding to various miRNAs. The diagnostic potential of circFoxo3 has been revealed in several cancers. Some research results have been found to contradict the results of other studies, and this may be due to insufficient sample sizes and inconsistencies in the experimental and nomenclature methods. In this review, we systematically summarize current knowledge about the biogenesis and functions of circRNAs, elucidate the roles of circFoxo3 in different cancers, and explore the clinical applications of circFoxo3. Noncoding RNAs, such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have been widely studied for their various roles in important disease progression processes and have been shown to be promising diagnostic and prognostic biomarkers for many diseases.1Zhang L. Zhang Y. Zhao Y. Wang Y. Ding H. Xue S. Li P. Circulating miRNAs as biomarkers for early diagnosis of coronary artery disease.Expert Opin. Ther. Pat. 2018; 28: 591-601Crossref PubMed Scopus (11) Google Scholar, 2Zhang Y. Zhang L. Wang Y. Ding H. Xue S. Yu H. Hu L. Qi H. Wang Y. Zhu W. et al.KCNQ1OT1, HIF1A-AS2 and APOA1-AS are promising novel biomarkers for diagnosis of coronary artery disease.Clin. Exp. Pharmacol. Physiol. 2019; 46: 635-642Crossref PubMed Scopus (11) Google Scholar, 3Zhang L. Zhang Y. Xue S. Ding H. Wang Y. Qi H. Wang Y. Zhu W. Li P. Clinical significance of circulating microRNAs as diagnostic biomarkers for coronary artery disease.J. Cell. Mol. Med. 2020; 24: 1146-1150Crossref PubMed Scopus (4) Google Scholar In recent years, circular RNA (circRNA), a special type of noncoding RNA with covalently closed loop structures, has gained much attention for its wide participation in various diseases, including cancer and cardiovascular disease (CVD).4Zhou B. Yu J.W. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1.Biochem. Biophys. Res. Commun. 2017; 487: 769-775Crossref PubMed Scopus (173) Google Scholar, 5Li M. Ding W. Tariq M.A. Chang W. Zhang X. Xu W. Hou L. Wang Y. Wang J. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p.Theranostics. 2018; 8: 5855-5869Crossref PubMed Scopus (80) Google Scholar, 6Yang Y. Gao X. Zhang M. Yan S. Sun C. Xiao F. Huang N. Yang X. Zhao K. Zhou H. et al.Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis.J. Natl. Cancer Inst. 2018; 110: 304-315Crossref Scopus (370) Google Scholar, 7Huang H. Wei L. Qin T. Yang N. Li Z. Xu Z. Circular RNA ciRS-7 triggers the migration and invasion of esophageal squamous cell carcinoma via miR-7/KLF4 and NF-κB signals.Cancer Biol. Ther. 2019; 20: 73-80Crossref PubMed Scopus (0) Google Scholar circRNAs were first documented in plant viruses8Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs.Cell. 1976; 8: 547-555Abstract Full Text PDF PubMed Google Scholar and were initially thought to have no function or very limited function.9Capel B. Swain A. Nicolis S. Hacker A. Walter M. Koopman P. Goodfellow P. Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis.Cell. 1993; 73: 1019-1030Abstract Full Text PDF PubMed Scopus (639) Google Scholar, 10Cocquerelle C. Daubersies P. Majérus M.A. Kerckaert J.P. Bailleul B. Splicing with inverted order of exons occurs proximal to large introns.EMBO J. 1992; 11: 1095-1098Crossref PubMed Google Scholar, 11Nigro J.M. Cho K.R. Fearon E.R. Kern S.E. Ruppert J.M. Oliner J.D. Kinzler K.W. Vogelstein B. Scrambled exons.Cell. 1991; 64: 607-613Abstract Full Text PDF PubMed Scopus (545) Google Scholar Subsequently, circRNAs were found in many eukaryotes, such as yeasts, mice, and humans.12Schroeder R. Breitenbach M. Schweyen R.J. Mitochondrial circular RNAs are absent in sporulating cells of Saccharomyces cerevisiae.Nucleic Acids Res. 1983; 11: 1735-1746Crossref PubMed Scopus (5) Google Scholar, 13Cocquerelle C. Mascrez B. Hétuin D. Bailleul B. Mis-splicing yields circular RNA molecules.FASEB J. 1993; 7: 155-160Crossref PubMed Google Scholar, 14Zaphiropoulos P.G. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping.Proc. Natl. Acad. Sci. USA. 1996; 93: 6536-6541Crossref PubMed Scopus (0) Google Scholar With the rapid development of prediction, detection, and screening technologies, different types of circRNAs have been discovered.15Hansen T.B. Kjems J. Damgaard C.K. Circular RNA and miR-7 in cancer.Cancer Res. 2013; 73: 5609-5612Crossref PubMed Scopus (574) Google Scholar, 16Memczak S. Jens M. Elefsinioti A. Torti F. Krueger J. Rybak A. Maier L. Mackowiak S.D. Gregersen L.H. Munschauer M. et al.Circular RNAs are a large class of animal RNAs with regulatory potency.Nature. 2013; 495: 333-338Crossref PubMed Scopus (3330) Google Scholar, 17Rybak-Wolf A. Stottmeister C. Glažar P. Jens M. Pino N. Giusti S. Hanan M. Behm M. Bartok O. Ashwal-Fluss R. et al.Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed.Mol. Cell. 2015; 58: 870-885Abstract Full Text Full Text PDF PubMed Scopus (930) Google Scholar, 18Du W.W. Yang W. Liu E. Yang Z. Dhaliwal P. Yang B.B. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2.Nucleic Acids Res. 2016; 44: 2846-2858Crossref PubMed Scopus (668) Google Scholar, 19Guo J.U. Agarwal V. Guo H. Bartel D.P. Expanded identification and characterization of mammalian circular RNAs.Genome Biol. 2014; 15: 409Crossref PubMed Scopus (778) Google Scholar, 20Zhang X.O. Wang H.B. Zhang Y. Lu X. Chen L.L. Yang L. Complementary sequence-mediated exon circularization.Cell. 2014; 159: 134-147Abstract Full Text Full Text PDF PubMed Scopus (804) Google Scholar Growing mechanistic studies have proven that circRNAs have important biological functions in the physiological and pathological development of many organisms.15Hansen T.B. Kjems J. Damgaard C.K. Circular RNA and miR-7 in cancer.Cancer Res. 2013; 73: 5609-5612Crossref PubMed Scopus (574) Google Scholar,21Geng H.H. Li R. Su Y.M. Xiao J. Pan M. Cai X.X. Ji X.P. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression.PLoS ONE. 2016; 11: e0151753Crossref PubMed Scopus (185) Google Scholar, 22Dang R.Y. Liu F.L. Li Y. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis.Biochem. Biophys. Res. Commun. 2017; 490: 104-110Crossref PubMed Scopus (77) Google Scholar, 23Innes H. Barclay S.T. Hayes P.C. Fraser A. Dillon J.F. Stanley A. Bathgate A. McDonald S.A. Goldberg D. Valerio H. et al.The risk of hepatocellular carcinoma in cirrhotic patients with hepatitis C and sustained viral response: role of the treatment regimen.J. Hepatol. 2018; 68: 646-654Abstract Full Text Full Text PDF PubMed Scopus (37) Google Scholar, 24Zhang S. Liao K. Miao Z. Wang Q. Miao Y. Guo Z. Qiu Y. Chen B. Ren L. Wei Z. et al.circFOXO3 promotes glioblastoma progression by acting as a competing endogenous RNA for NFAT5.Neuro-oncol. 2019; 21: 1284-1296Crossref PubMed Scopus (12) Google Scholar circRNAs can act as important regulatory factors at both the transcriptional and posttranscriptional levels by sponging miRNAs, binding to RNA-binding proteins (RBPs), regulating parental gene expression, or serving as translation templates.25Zhang Y. Zhang X.O. Chen T. Xiang J.F. Yin Q.F. Xing Y.H. Zhu S. Yang L. Chen L.L. Circular intronic long noncoding RNAs.Mol. Cell. 2013; 51: 792-806Abstract Full Text Full Text PDF PubMed Scopus (990) Google Scholar, 26Conn S.J. Pillman K.A. Toubia J. Conn V.M. Salmanidis M. Phillips C.A. Roslan S. Schreiber A.W. Gregory P.A. Goodall G.J. The RNA binding protein quaking regulates formation of circRNAs.Cell. 2015; 160: 1125-1134Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 27Wang K. Long B. Liu F. Wang J.X. Liu C.Y. Zhao B. Zhou L.Y. Sun T. Wang M. Yu T. et al.A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223.Eur. Heart J. 2016; 37: 2602-2611Crossref PubMed Scopus (441) Google Scholar, 28Du W.W. Fang L. Yang W. Wu N. Awan F.M. Yang Z. Yang B.B. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity.Cell Death Differ. 2017; 24: 357-370Crossref PubMed Scopus (231) Google Scholar, 29Legnini I. Di Timoteo G. Rossi F. Morlando M. Briganti F. Sthandier O. Fatica A. Santini T. Andronache A. Wade M. et al.circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis.Mol. Cell. 2017; 66: 22-37.e9Abstract Full Text Full Text PDF PubMed Scopus (717) Google Scholar ciRS-7/CDR1as and sex-determining region Y (Sry, a testis-specific circRNA) can bind to miRNAs to regulate the progression of various diseases.15Hansen T.B. Kjems J. Damgaard C.K. Circular RNA and miR-7 in cancer.Cancer Res. 2013; 73: 5609-5612Crossref PubMed Scopus (574) Google Scholar,16Memczak S. Jens M. Elefsinioti A. Torti F. Krueger J. Rybak A. Maier L. Mackowiak S.D. Gregersen L.H. Munschauer M. et al.Circular RNAs are a large class of animal RNAs with regulatory potency.Nature. 2013; 495: 333-338Crossref PubMed Scopus (3330) Google Scholar,30Pan H. Li T. Jiang Y. Pan C. Ding Y. Huang Z. Yu H. Kong D. Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway.J. Cell. Biochem. 2018; 119: 440-446Crossref PubMed Scopus (145) Google Scholar, 31Liu L. Liu F.B. Huang M. Xie K. Xie Q.S. Liu C.H. Shen M.J. Huang Q. Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway.Hepatobiliary Pancreat. Dis. Int. 2019; 18: 580-586Crossref PubMed Scopus (35) Google Scholar, 32Hansen T.B. Jensen T.I. Clausen B.H. Bramsen J.B. Finsen B. Damgaard C.K. Kjems J. Natural RNA circles function as efficient microRNA sponges.Nature. 2013; 495: 384-388Crossref PubMed Scopus (3278) Google Scholar circANRIL has been determined to sponge the PES1 protein (an essential 60S-preribosomal assembly factor) and inhibit ribosome biogenesis, thereby providing an atheroprotective role.33Holdt L.M. Stahringer A. Sass K. Pichler G. Kulak N.A. Wilfert W. Kohlmaier A. Herbst A. Northoff B.H. Nicolaou A. et al.Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans.Nat. Commun. 2016; 7: 12429Crossref PubMed Scopus (444) Google Scholar ciRNA-ankrd52 can bind to RNA polymerase II (RNA Pol II) of the precursor (pre-)mRNA of the ANKRD52 gene to promote transcription.25Zhang Y. Zhang X.O. Chen T. Xiang J.F. Yin Q.F. Xing Y.H. Zhu S. Yang L. Chen L.L. Circular intronic long noncoding RNAs.Mol. Cell. 2013; 51: 792-806Abstract Full Text Full Text PDF PubMed Scopus (990) Google Scholar circFBXW7 can be a template for translation to generate a functional protein that represses glioma tumorigenesis.6Yang Y. Gao X. Zhang M. Yan S. Sun C. Xiao F. Huang N. Yang X. Zhao K. Zhou H. et al.Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis.J. Natl. Cancer Inst. 2018; 110: 304-315Crossref Scopus (370) Google Scholar circFoxo3 is one of the most studied circRNAs. circFoxo3 is generated from the Foxo3 gene, which is considered a tumor suppressor gene.34Kenyon C.J. The genetics of ageing.Nature. 2010; 464: 504-512Crossref PubMed Scopus (1700) Google Scholar,35Willcox B.J. Tranah G.J. Chen R. Morris B.J. Masaki K.H. He Q. Willcox D.C. Allsopp R.C. Moisyadi S. Poon L.W. et al.The FoxO3 gene and cause-specific mortality.Aging Cell. 2016; 15: 617-624Crossref PubMed Scopus (32) Google Scholar circFoxo3 has been shown to have multiple functions in various cancers.28Du W.W. Fang L. Yang W. Wu N. Awan F.M. Yang Z. Yang B.B. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity.Cell Death Differ. 2017; 24: 357-370Crossref PubMed Scopus (231) Google Scholar,36Zhou J. Zhou L.Y. Tang X. Zhang J. Zhai L.L. Yi Y.Y. Yi J. Lin J. Qian J. Deng Z.Q. circ-Foxo3 is positively associated with the Foxo3 gene and leads to better prognosis of acute myeloid leukemia patients.BMC Cancer. 2019; 19: 930Crossref PubMed Scopus (10) Google Scholar,37Shen Z. Zhou L. Zhang C. Xu J. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel.Cancer Lett. 2020; 468: 88-101Crossref PubMed Scopus (24) Google Scholar In this review, we summarize the current knowledge on the biogenesis and functions of circRNAs, elucidate the roles of circFoxo3 in cancers, and explore the clinical application of circFoxo3. circRNAs originate from pre-mRNAs by back-splicing, a unique mechanism that differs from canonical splicing, which generates mRNA.38Jeck W.R. Sorrentino J.A. Wang K. Slevin M.K. Burd C.E. Liu J. Marzluff W.F. Sharpless N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA. 2013; 19: 141-157Crossref PubMed Scopus (1837) Google Scholar There are three types of circRNAs: exonic circRNAs (ecircRNAs or ecRNAs),20Zhang X.O. Wang H.B. Zhang Y. Lu X. Chen L.L. Yang L. Complementary sequence-mediated exon circularization.Cell. 2014; 159: 134-147Abstract Full Text Full Text PDF PubMed Scopus (804) Google Scholar circular intronic RNAs (ciRNAs),25Zhang Y. Zhang X.O. Chen T. Xiang J.F. Yin Q.F. Xing Y.H. Zhu S. Yang L. Chen L.L. Circular intronic long noncoding RNAs.Mol. Cell. 2013; 51: 792-806Abstract Full Text Full Text PDF PubMed Scopus (990) Google Scholar and exon-intron circRNAs (EIciRNAs),39Li Z. Huang C. Bao C. Chen L. Lin M. Wang X. Zhong G. Yu B. Hu W. Dai L. et al.Exon-intron circular RNAs regulate transcription in the nucleus.Nat. Struct. Mol. Biol. 2015; 22: 256-264Crossref PubMed Scopus (1136) Google Scholar which can be generated from different mechanisms. Jeck et al.38Jeck W.R. Sorrentino J.A. Wang K. Slevin M.K. Burd C.E. Liu J. Marzluff W.F. Sharpless N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA. 2013; 19: 141-157Crossref PubMed Scopus (1837) Google Scholar reported two models of circRNA formation: lariat-driven circularization and intron pairing-driven circularization. In the lariat-driven circularization model, a 5′ splice donor (GU) and a 3′ splice acceptor (AG) in the introns can form a lariat that will then be internally spliced to generate an exonic circle (ecRNAs)38Jeck W.R. Sorrentino J.A. Wang K. Slevin M.K. Burd C.E. Liu J. Marzluff W.F. Sharpless N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA. 2013; 19: 141-157Crossref PubMed Scopus (1837) Google Scholar,40Jeck W.R. Sharpless N.E. Detecting and characterizing circular RNAs.Nat. Biotechnol. 2014; 32: 453-461Crossref PubMed Scopus (1090) Google Scholar (Figure 1A). In the intron pairing-driven circularization model, the pairing of RNA base motifs (e.g., Alu repeats, the most highly repeated interspersed repeat element in humans that contributes to the occurrence of a wide range of diseases41Deininger P. Alu elements: know the SINEs.Genome Biol. 2011; 12: 236Crossref PubMed Scopus (251) Google Scholar) in the introns of pre-mRNA with reverse complementary sequences can facilitate the generation of ecRNAs (introns removed) or EIciRNAs (introns retained)38Jeck W.R. Sorrentino J.A. Wang K. Slevin M.K. Burd C.E. Liu J. Marzluff W.F. Sharpless N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA. 2013; 19: 141-157Crossref PubMed Scopus (1837) Google Scholar (Figure 1B). A growing number of studies have illustrated that the intron pairing-driven circularization occurs more frequently than lariat-driven circularization.38Jeck W.R. Sorrentino J.A. Wang K. Slevin M.K. Burd C.E. Liu J. Marzluff W.F. Sharpless N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA. 2013; 19: 141-157Crossref PubMed Scopus (1837) Google Scholar,39Li Z. Huang C. Bao C. Chen L. Lin M. Wang X. Zhong G. Yu B. Hu W. Dai L. et al.Exon-intron circular RNAs regulate transcription in the nucleus.Nat. Struct. Mol. Biol. 2015; 22: 256-264Crossref PubMed Scopus (1136) Google Scholar Moreover, some recent studies have suggested that RBPs, such as muscleblind (MBL) proteins, also participate in the formation of circRNAs.26Conn S.J. Pillman K.A. Toubia J. Conn V.M. Salmanidis M. Phillips C.A. Roslan S. Schreiber A.W. Gregory P.A. Goodall G.J. The RNA binding protein quaking regulates formation of circRNAs.Cell. 2015; 160: 1125-1134Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar,42Ashwal-Fluss R. Meyer M. Pamudurti N.R. Ivanov A. Bartok O. Hanan M. Evantal N. Memczak S. Rajewsky N. Kadener S. circRNA biogenesis competes with pre-mRNA splicing.Mol. Cell. 2014; 56: 55-66Abstract Full Text Full Text PDF PubMed Scopus (1228) Google Scholar The bridging of RBPs with pre-mRNAs is also a pathway for the production of circRNAs (ecRNAs or EIciRNAs)26Conn S.J. Pillman K.A. Toubia J. Conn V.M. Salmanidis M. Phillips C.A. Roslan S. Schreiber A.W. Gregory P.A. Goodall G.J. The RNA binding protein quaking regulates formation of circRNAs.Cell. 2015; 160: 1125-1134Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar,42Ashwal-Fluss R. Meyer M. Pamudurti N.R. Ivanov A. Bartok O. Hanan M. Evantal N. Memczak S. Rajewsky N. Kadener S. circRNA biogenesis competes with pre-mRNA splicing.Mol. Cell. 2014; 56: 55-66Abstract Full Text Full Text PDF PubMed Scopus (1228) Google Scholar (Figure 1C). Zhang et al.25Zhang Y. Zhang X.O. Chen T. Xiang J.F. Yin Q.F. Xing Y.H. Zhu S. Yang L. Chen L.L. Circular intronic long noncoding RNAs.Mol. Cell. 2013; 51: 792-806Abstract Full Text Full Text PDF PubMed Scopus (990) Google Scholar proposed a model that described the formation of ciRNAs. In the introns, the GU-rich element near the 5′ splice site and the C-rich element close to the branch will bind together during back-splicing.25Zhang Y. Zhang X.O. Chen T. Xiang J.F. Yin Q.F. Xing Y.H. Zhu S. Yang L. Chen L.L. Circular intronic long noncoding RNAs.Mol. Cell. 2013; 51: 792-806Abstract Full Text Full Text PDF PubMed Scopus (990) Google Scholar The other exons and introns are removed by a spliceosome. In this mechanism, only ciRNAs are formed25Zhang Y. Zhang X.O. Chen T. Xiang J.F. Yin Q.F. Xing Y.H. Zhu S. Yang L. Chen L.L. Circular intronic long noncoding RNAs.Mol. Cell. 2013; 51: 792-806Abstract Full Text Full Text PDF PubMed Scopus (990) Google Scholar (Figure 1D). circRNAs have the following common biological properties: (1) high stability: due to their circular structures, circRNAs are more stable than linear RNAs and cannot be cleaved by ribonuclease (RNase).43Suzuki H. Zuo Y. Wang J. Zhang M.Q. Malhotra A. Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing.Nucleic Acids Res. 2006; 34: e63Crossref PubMed Scopus (286) Google Scholar (2) Wide distribution: circRNAs exist in a variety of organisms and all tissues.38Jeck W.R. Sorrentino J.A. Wang K. Slevin M.K. Burd C.E. Liu J. Marzluff W.F. Sharpless N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA. 2013; 19: 141-157Crossref PubMed Scopus (1837) Google Scholar,44Xu T. Wu J. Han P. Zhao Z. Song X. Circular RNA expression profiles and features in human tissues: a study using RNA-seq data.BMC Genomics. 2017; 18: 680Crossref PubMed Scopus (86) Google Scholar,45Zeng X. Lin W. Guo M. Zou Q. A comprehensive overview and evaluation of circular RNA detection tools.PLoS Comput. Biol. 2017; 13: e1005420Crossref PubMed Scopus (160) Google Scholar Zheng et al.46Zheng Q. Bao C. Guo W. Li S. Chen J. Chen B. Luo Y. Lyu D. Li Y. Shi G. et al.Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs.Nat. Commun. 2016; 7: 11215Crossref PubMed Scopus (943) Google Scholar identified ~27,000 circRNAs from six normal tissues and seven cancerous tissues by RNA sequencing. In humans, more than 30,000 circRNAs have been identified.44Xu T. Wu J. Han P. Zhao Z. Song X. Circular RNA expression profiles and features in human tissues: a study using RNA-seq data.BMC Genomics. 2017; 18: 680Crossref PubMed Scopus (86) Google Scholar,45Zeng X. Lin W. Guo M. Zou Q. A comprehensive overview and evaluation of circular RNA detection tools.PLoS Comput. Biol. 2017; 13: e1005420Crossref PubMed Scopus (160) Google Scholar (3) Specificity: the expression of circRNAs is tissue-, cell-, and developmental stage-specific.44Xu T. Wu J. Han P. Zhao Z. Song X. Circular RNA expression profiles and features in human tissues: a study using RNA-seq data.BMC Genomics. 2017; 18: 680Crossref PubMed Scopus (86) Google Scholar,47Jakobi T. Czaja-Hasse L.F. Reinhardt R. Dieterich C. Profiling and validation of the circular RNA repertoire in adult murine hearts.Genomics Proteomics Bioinformatics. 2016; 14: 216-223Crossref PubMed Scopus (54) Google Scholar,48Li Y. Zhang J. Huo C. Ding N. Li J. Xiao J. Lin X. Cai B. Zhang Y. Xu J. Dynamic organization of lncRNA and circular RNA regulators collectively controlled cardiac differentiation in humans.EBioMedicine. 2017; 24: 137-146Abstract Full Text Full Text PDF PubMed Scopus (41) Google Scholar In heart differentiation, circRNAs have altered profiles at four stages.48Li Y. Zhang J. Huo C. Ding N. Li J. Xiao J. Lin X. Cai B. Zhang Y. Xu J. Dynamic organization of lncRNA and circular RNA regulators collectively controlled cardiac differentiation in humans.EBioMedicine. 2017; 24: 137-146Abstract Full Text Full Text PDF PubMed Scopus (41) Google Scholar Rat neonatal hearts have higher levels of overall circRNAs than that in adult rat hearts,49Werfel S. Nothjunge S. Schwarzmayr T. Strom T.M. Meitinger T. Engelhardt S. Characterization of circular RNAs in human, mouse and rat hearts.J. Mol. Cell. Cardiol. 2016; 98: 103-107Abstract Full Text Full Text PDF PubMed Google Scholar indicating the possible roles of circRNAs in the development of heart. (4) Conservation: many circRNAs are conservatively expressed among species,38Jeck W.R. Sorrentino J.A. Wang K. Slevin M.K. Burd C.E. Liu J. Marzluff W.F. Sharpless N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA. 2013; 19: 141-157Crossref PubMed Scopus (1837) Google Scholar,50AbouHaidar M.G. Venkataraman S. Golshani A. Liu B. Ahmad T. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt.Proc. Natl. Acad. Sci. USA. 2014; 111: 14542-14547Crossref PubMed Scopus (90) Google Scholar whereas a number of circRNAs are specific to species.19Guo J.U. Agarwal V. Guo H. Bartel D.P. Expanded identification and characterization of mammalian circular RNAs.Genome Biol. 2014; 15: 409Crossref PubMed Scopus (778) Google Scholar,49Werfel S. Nothjunge S. Schwarzmayr T. Strom T.M. Meitinger T. Engelhardt S. Characterization of circular RNAs in human, mouse and rat hearts.J. Mol. Cell. Cardiol. 2016; 98: 103-107Abstract Full Text Full Text PDF PubMed Google Scholar,51Aufiero S. Reckman Y.J. Pinto Y.M. Creemers E.E. Circular RNAs open a new chapter in cardiovascular biology.Nat. Rev. Cardiol. 2019; 16: 503-514Crossref PubMed Scopus (76) Google Scholar, 52Lim T.B. Lavenniah A. Foo R.S. Circles in the heart and cardiovascular system.Cardiovasc. Res. 2020; 116: 269-278PubMed Google Scholar, 53Barrett S.P. Salzman J. Circular RNAs: analysis, expression and potential functions.Development. 2016; 143: 1838-1847Crossref PubMed Scopus (350) Google Scholar Werfel et al.49Werfel S. Nothjunge S. Schwarzmayr T. Strom T.M. Meitinger T. Engelhardt S. Characterization of circular RNAs in human, mouse and rat hearts.J. Mol. Cell. Cardiol. 2016; 98: 103-107Abstract Full Text Full Text PDF PubMed Google Scholar determined that only a small number of circRNAs were conserved across humans, mice, and rats. Barrett et al.53Barrett S.P. Salzman J. Circular RNAs: analysis, expression and potential functions.Development. 2016; 143: 1838-1847Crossref PubMed Scopus (350) Google Scholar also confirmed that only ~5%–30% of sequences are homologous among mammals, including mice, humans, rats, and pigs. (5) Altered expression in normal and pathological conditions: studies have identified the differential expression of circRNAs in various diseases.49Werfel S. Nothjunge S. Schwarzmayr T. Strom T.M. Meitinger T. Engelhardt S. Characterization of circular RNAs in human, mouse and rat hearts.J. Mol. Cell. Cardiol. 2016; 98: 103-107Abstract Full Text Full Text PDF PubMed Google Scholar,54Siede D. Rapti K. Gorska A.A. Katus H.A. Altmüller J. Boeckel J.N. Meder B. Maack C. Völkers M. Müller O.J. et al.Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease.J. Mol. Cell. Cardiol. 2017; 109: 48-56Abstract Full Text Full Text PDF PubMed Google Scholar,55Gupta S.K. Garg A. Bär C. Chatterjee S. Foinquinos A. Milting H. Streckfuß-Bömeke K. Fiedler J. Thum T. Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression.Circ. Res. 2018; 122: 246-254Crossref PubMed Google Scholar The wide distribution, expression specificity, and different localization of circRNAs indicate that circRNAs have various biological functions. Recent studies have illustrated that circRNAs can function in different ways. circRNAs can absorb miRNAs like sponges with the help of miRNA response elements (MREs).15Hansen T.B. Kjems J. Damgaard C.K. Circular RNA and miR-7 in cancer.Cancer Res. 2013; 73: 5609-5612Crossref PubMed Scopus (574) Google Scholar,32Hansen T.B. Jensen T.I. Clausen B.H. Bramsen J.B. Finsen B. Damgaard C.K. Kjems J. Natural RNA circles function as efficient microRNA sponges.Nature. 2013; 495: 384-388Crossref PubMed Scopus (3278) Google Scholar Absorption reduces the miRNA levels and thus alleviates the inhibitory effect on the target genes (Figure 1E). circFoxo3 can competitively bind to miRNAs to influence a number of physiological and pathological processes.56Li X. Li C. Liu Z. Ni W. Yao R. Xu Y. Quan R. Zhang M. Li H. Liu L. Hu S. Retraction.Cells. 2020; 9: 2504Crossref Scopus (0) Google Scholar, 57Huang W. Huang F. Feng C. circFoxo3 promotes adriamycin resistance through regulation of miR-199a-5p/ATP binding cassette subfamily C member 1 axis in hepatocellular carcinoma.OncoTargets Ther. 2020; 13: 5113-5122Crossref PubMed Scopus (0) Google Scholar, 58Xiang T. Jiang H.S. Zhang B.T. Liu G. circFOXO3 functions as a molecular sponge for miR-143-3p to promote the progression of gastric carcinoma via upregulating USP44.Gene. 2020; 753: 144798Crossref PubMed Scopus (1) Google Scholar Sry is able to interact with miR-138 through MREs, which might be an important pathway of Sry function.32Hansen T.B. Jensen T.I. Clausen B.H. Bramsen J.B. Finsen B. Damgaard C.K. Kjems J. Natural RNA circles function as efficient microRNA sponges.Nature. 2013; 495: 384-388Crossref PubMed Scopus (3278) Google Scholar HRCR can directly bind to miR-223, which promotes the pathogenesis of cardiac hypertrophy and heart failure.27Wang K. Long B. Liu F. Wang J.X. Liu C.Y. Zhao B. Zhou L.Y. Sun T. Wang M. Yu T. et al.A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223.Eur. Heart J. 2016; 37: 2602-2611Crossref PubMed Scopus (441) Google Scholar The absorption of miR-223 by HRCR decreased the activity of miR-223, thereby inhibiting the pathological processes of cardiac hypertrophy and heart failure.27Wang K. Long B. Liu F. Wang J.X. Liu C.Y. Zhao B. Zhou L.Y. Sun T. Wang M. Yu T. et al.A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223.Eur. Heart J. 2016; 37: 2602-2611Crossref PubMed Scopus (441) Google Scholar Studies have revealed that abundant expression of the circRNAs and/or exceptional binding affinity compared with other mRNA targets might be necessary for circRNAs to suppress miRNA activity by this mechanism.19Guo J.U. Agarwal V. Guo H. Bartel D.P. Expanded identification and characterization of mammalian circular RNAs.Genome Biol. 2014; 15: 409Crossref PubMed Scopus (778) Google Scholar,59Denzler R. Agarwal V. Stefano J. Bartel D.P. Stoffel M. Assessing the ceRNA" @default.
- W3124389218 created "2021-02-01" @default.
- W3124389218 creator A5009121120 @default.
- W3124389218 creator A5021202119 @default.
- W3124389218 creator A5030764071 @default.
- W3124389218 creator A5031767581 @default.
- W3124389218 creator A5042589101 @default.
- W3124389218 date "2021-03-01" @default.
- W3124389218 modified "2023-10-16" @default.
- W3124389218 title "Pathogenic mechanisms and the potential clinical value of circFoxo3 in cancers" @default.
- W3124389218 cites W1501837989 @default.
- W3124389218 cites W1521279639 @default.
- W3124389218 cites W1963990067 @default.
- W3124389218 cites W1966411071 @default.
- W3124389218 cites W1966557314 @default.
- W3124389218 cites W1969037652 @default.
- W3124389218 cites W1981726010 @default.
- W3124389218 cites W1981913677 @default.
- W3124389218 cites W1983675868 @default.
- W3124389218 cites W1985033899 @default.
- W3124389218 cites W1991082489 @default.
- W3124389218 cites W1999560226 @default.
- W3124389218 cites W2008976996 @default.
- W3124389218 cites W2015870426 @default.
- W3124389218 cites W2017919052 @default.
- W3124389218 cites W2029653263 @default.
- W3124389218 cites W2037691883 @default.
- W3124389218 cites W2054891772 @default.
- W3124389218 cites W2055493067 @default.
- W3124389218 cites W2058484936 @default.
- W3124389218 cites W2058835062 @default.
- W3124389218 cites W2060940710 @default.
- W3124389218 cites W2064165694 @default.
- W3124389218 cites W2066747004 @default.
- W3124389218 cites W2067799923 @default.
- W3124389218 cites W2080127892 @default.
- W3124389218 cites W2080349528 @default.
- W3124389218 cites W2082979850 @default.
- W3124389218 cites W2094813328 @default.
- W3124389218 cites W2095725724 @default.
- W3124389218 cites W2119391023 @default.
- W3124389218 cites W2126938291 @default.
- W3124389218 cites W2134394278 @default.
- W3124389218 cites W2138390523 @default.
- W3124389218 cites W2147806662 @default.
- W3124389218 cites W2149500977 @default.
- W3124389218 cites W2161003771 @default.
- W3124389218 cites W2165232178 @default.
- W3124389218 cites W2266356262 @default.
- W3124389218 cites W2308368972 @default.
- W3124389218 cites W2316171452 @default.
- W3124389218 cites W2336226589 @default.
- W3124389218 cites W2343982815 @default.
- W3124389218 cites W2346480860 @default.
- W3124389218 cites W2366536035 @default.
- W3124389218 cites W2409907752 @default.
- W3124389218 cites W2473162054 @default.
- W3124389218 cites W2503932051 @default.
- W3124389218 cites W2511152819 @default.
- W3124389218 cites W2531009676 @default.
- W3124389218 cites W2557141539 @default.
- W3124389218 cites W2563470051 @default.
- W3124389218 cites W2592988313 @default.
- W3124389218 cites W2594166167 @default.
- W3124389218 cites W2601436215 @default.
- W3124389218 cites W2606895029 @default.
- W3124389218 cites W2618169423 @default.
- W3124389218 cites W2622004629 @default.
- W3124389218 cites W2624931807 @default.
- W3124389218 cites W2725883841 @default.
- W3124389218 cites W2752880228 @default.
- W3124389218 cites W2755610556 @default.
- W3124389218 cites W2756099564 @default.
- W3124389218 cites W2763176611 @default.
- W3124389218 cites W2769117260 @default.
- W3124389218 cites W2770047542 @default.
- W3124389218 cites W2811482166 @default.
- W3124389218 cites W2886387652 @default.
- W3124389218 cites W2887709777 @default.
- W3124389218 cites W2890303873 @default.
- W3124389218 cites W2891264826 @default.
- W3124389218 cites W2902122549 @default.
- W3124389218 cites W2912017471 @default.
- W3124389218 cites W2920921684 @default.
- W3124389218 cites W2933481844 @default.
- W3124389218 cites W2934320411 @default.
- W3124389218 cites W2937483840 @default.
- W3124389218 cites W2944606734 @default.
- W3124389218 cites W2951071083 @default.
- W3124389218 cites W2951344785 @default.
- W3124389218 cites W2954665433 @default.
- W3124389218 cites W2963859633 @default.
- W3124389218 cites W2964201212 @default.
- W3124389218 cites W2971628029 @default.
- W3124389218 cites W2974599123 @default.
- W3124389218 cites W2977651922 @default.
- W3124389218 cites W2980841883 @default.
- W3124389218 cites W2982967496 @default.