Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124401653> ?p ?o ?g. }
- W3124401653 endingPage "754" @default.
- W3124401653 startingPage "731" @default.
- W3124401653 abstract "Abstract. In a previous study the quasi-instantaneous chemical impacts (rapid adjustments) of strongly enhanced methane (CH4) mixing ratios have been analysed. However, to quantify the influence of the respective slow climate feedbacks on the chemical composition it is necessary to include the radiation-driven temperature feedback. Therefore, we perform sensitivity simulations with doubled and quintupled present-day (year 2010) CH4 mixing ratios with the chemistry–climate model EMAC (European Centre for Medium-Range Weather Forecasts, Hamburg version – Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry) and include in a novel set-up a mixed-layer ocean model to account for tropospheric warming. Strong increases in CH4 lead to a reduction in the hydroxyl radical in the troposphere, thereby extending the CH4 lifetime. Slow climate feedbacks counteract this reduction in the hydroxyl radical through increases in tropospheric water vapour and ozone, thereby dampening the extension of CH4 lifetime in comparison with the quasi-instantaneous response. Changes in the stratospheric circulation evolve clearly with the warming of the troposphere. The Brewer–Dobson circulation strengthens, affecting the response of trace gases, such as ozone, water vapour and CH4 in the stratosphere, and also causing stratospheric temperature changes. In the middle and upper stratosphere, the increase in stratospheric water vapour is reduced with respect to the quasi-instantaneous response. We find that this difference cannot be explained by the response of the cold point and the associated water vapour entry values but by a weaker strengthening of the in situ source of water vapour through CH4 oxidation. However, in the lower stratosphere water vapour increases more strongly when tropospheric warming is accounted for, enlarging its overall radiative impact. The response of the stratosphere adjusted temperatures driven by slow climate feedbacks is dominated by these increases in stratospheric water vapour as well as strongly decreased ozone mixing ratios above the tropical tropopause, which result from enhanced tropical upwelling. While rapid radiative adjustments from ozone and stratospheric water vapour make an essential contribution to the effective CH4 radiative forcing, the radiative impact of the respective slow feedbacks is rather moderate. In line with this, the climate sensitivity from CH4 changes in this chemistry–climate model set-up is not significantly different from the climate sensitivity in carbon-dioxide-driven simulations, provided that the CH4 effective radiative forcing includes the rapid adjustments from ozone and stratospheric water vapour changes." @default.
- W3124401653 created "2021-02-01" @default.
- W3124401653 creator A5013620281 @default.
- W3124401653 creator A5033510053 @default.
- W3124401653 creator A5040485527 @default.
- W3124401653 creator A5078008464 @default.
- W3124401653 creator A5078307835 @default.
- W3124401653 creator A5085629475 @default.
- W3124401653 date "2021-01-19" @default.
- W3124401653 modified "2023-10-04" @default.
- W3124401653 title "Slow feedbacks resulting from strongly enhanced atmospheric methane mixing ratios in a chemistry–climate model with mixed-layer ocean" @default.
- W3124401653 cites W1503729094 @default.
- W3124401653 cites W1690787865 @default.
- W3124401653 cites W1818398520 @default.
- W3124401653 cites W1968362955 @default.
- W3124401653 cites W1973233492 @default.
- W3124401653 cites W1981368903 @default.
- W3124401653 cites W1994987090 @default.
- W3124401653 cites W2000054667 @default.
- W3124401653 cites W2001063623 @default.
- W3124401653 cites W2006165291 @default.
- W3124401653 cites W2017616744 @default.
- W3124401653 cites W2022793339 @default.
- W3124401653 cites W2029201420 @default.
- W3124401653 cites W2044704835 @default.
- W3124401653 cites W2048476229 @default.
- W3124401653 cites W2052773037 @default.
- W3124401653 cites W2062310155 @default.
- W3124401653 cites W2063735826 @default.
- W3124401653 cites W2087171230 @default.
- W3124401653 cites W2092118346 @default.
- W3124401653 cites W2094002372 @default.
- W3124401653 cites W2110465139 @default.
- W3124401653 cites W2124365777 @default.
- W3124401653 cites W2125996960 @default.
- W3124401653 cites W2126139831 @default.
- W3124401653 cites W2126681088 @default.
- W3124401653 cites W2127790541 @default.
- W3124401653 cites W2133484165 @default.
- W3124401653 cites W2138574429 @default.
- W3124401653 cites W2140912819 @default.
- W3124401653 cites W2144985953 @default.
- W3124401653 cites W2152387463 @default.
- W3124401653 cites W2155144099 @default.
- W3124401653 cites W2159162721 @default.
- W3124401653 cites W2161929247 @default.
- W3124401653 cites W2162744327 @default.
- W3124401653 cites W2165161618 @default.
- W3124401653 cites W2240344480 @default.
- W3124401653 cites W2281081416 @default.
- W3124401653 cites W2427928079 @default.
- W3124401653 cites W2473587346 @default.
- W3124401653 cites W2531205202 @default.
- W3124401653 cites W254120449 @default.
- W3124401653 cites W2548091562 @default.
- W3124401653 cites W2564634094 @default.
- W3124401653 cites W2566013472 @default.
- W3124401653 cites W2567371572 @default.
- W3124401653 cites W2604218940 @default.
- W3124401653 cites W2625899859 @default.
- W3124401653 cites W2727841280 @default.
- W3124401653 cites W2777531248 @default.
- W3124401653 cites W2787701140 @default.
- W3124401653 cites W2790444922 @default.
- W3124401653 cites W2792269552 @default.
- W3124401653 cites W2800421967 @default.
- W3124401653 cites W2895974873 @default.
- W3124401653 cites W2914305062 @default.
- W3124401653 cites W2947488951 @default.
- W3124401653 cites W2954860072 @default.
- W3124401653 cites W2968094068 @default.
- W3124401653 cites W2990482070 @default.
- W3124401653 cites W3000778149 @default.
- W3124401653 cites W3045202089 @default.
- W3124401653 cites W3217032905 @default.
- W3124401653 cites W4213327538 @default.
- W3124401653 cites W4237696309 @default.
- W3124401653 doi "https://doi.org/10.5194/acp-21-731-2021" @default.
- W3124401653 hasPublicationYear "2021" @default.
- W3124401653 type Work @default.
- W3124401653 sameAs 3124401653 @default.
- W3124401653 citedByCount "1" @default.
- W3124401653 countsByYear W31244016532023 @default.
- W3124401653 crossrefType "journal-article" @default.
- W3124401653 hasAuthorship W3124401653A5013620281 @default.
- W3124401653 hasAuthorship W3124401653A5033510053 @default.
- W3124401653 hasAuthorship W3124401653A5040485527 @default.
- W3124401653 hasAuthorship W3124401653A5078008464 @default.
- W3124401653 hasAuthorship W3124401653A5078307835 @default.
- W3124401653 hasAuthorship W3124401653A5085629475 @default.
- W3124401653 hasBestOaLocation W31244016531 @default.
- W3124401653 hasConcept C115719804 @default.
- W3124401653 hasConcept C116119225 @default.
- W3124401653 hasConcept C121332964 @default.
- W3124401653 hasConcept C127313418 @default.
- W3124401653 hasConcept C130047971 @default.
- W3124401653 hasConcept C132651083 @default.
- W3124401653 hasConcept C147534773 @default.