Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124451696> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3124451696 abstract "Most common cancer in females is found to be Breast cancer which is a widespread disease. One out of eight females worldwide are affected by this cancer only. We can detect this cancer by detecting malignancy from breast tissues. There are various types of computer-aided techniques and approaches which are used by doctors for detecting cancer. The major objective of this paper is to build a well-defined model for the recognition of breast cancer by expending various parameters. Different types of machine learning and deep learning methodologies are used for the classification of malignant and benign tissues. In this we are using a dataset that obtains 569 samples with 30 features, this dataset is majorly called the Wisconsin dataset. Many techniques are implemented on this dataset we are using deep convolutional neural network (CNN) and Machine learning methodology (KNN) for the diagnosis and training purpose and then compare the results of both the techniques. Deep convolutional NN is implemented on the google platform called the Google Colab on the other side KNN is implemented on the Anaconda Spyder platform. The best accuracy achieved from KNN is 96.49%. To improve the performance and accuracy we implemented CNN on the same dataset and then achieved 99.41% accuracy. Deep learning is extensively useful in getting the best and optimal results in other performance matrics such as precision, recall, F1-score and AVC-ROC - 98.64%,97.61 %, 98.08%, 97.61% respectively." @default.
- W3124451696 created "2021-02-01" @default.
- W3124451696 creator A5019473797 @default.
- W3124451696 creator A5049246663 @default.
- W3124451696 date "2020-11-06" @default.
- W3124451696 modified "2023-09-27" @default.
- W3124451696 title "A Convolutional Neural Network Approach for The Diagnosis of Breast Cancer" @default.
- W3124451696 cites W2533800772 @default.
- W3124451696 cites W2716665989 @default.
- W3124451696 cites W2743208692 @default.
- W3124451696 cites W2791942584 @default.
- W3124451696 cites W2889646458 @default.
- W3124451696 cites W2899429952 @default.
- W3124451696 cites W2901461959 @default.
- W3124451696 cites W2907666198 @default.
- W3124451696 cites W2962898707 @default.
- W3124451696 cites W2963446712 @default.
- W3124451696 cites W2963701680 @default.
- W3124451696 cites W2973569693 @default.
- W3124451696 cites W2977153525 @default.
- W3124451696 cites W2982083378 @default.
- W3124451696 cites W3002658398 @default.
- W3124451696 cites W3005061589 @default.
- W3124451696 cites W3011178854 @default.
- W3124451696 cites W3029973562 @default.
- W3124451696 doi "https://doi.org/10.1109/pdgc50313.2020.9315817" @default.
- W3124451696 hasPublicationYear "2020" @default.
- W3124451696 type Work @default.
- W3124451696 sameAs 3124451696 @default.
- W3124451696 citedByCount "4" @default.
- W3124451696 countsByYear W31244516962022 @default.
- W3124451696 countsByYear W31244516962023 @default.
- W3124451696 crossrefType "proceedings-article" @default.
- W3124451696 hasAuthorship W3124451696A5019473797 @default.
- W3124451696 hasAuthorship W3124451696A5049246663 @default.
- W3124451696 hasConcept C108583219 @default.
- W3124451696 hasConcept C119857082 @default.
- W3124451696 hasConcept C121608353 @default.
- W3124451696 hasConcept C126322002 @default.
- W3124451696 hasConcept C142724271 @default.
- W3124451696 hasConcept C153180895 @default.
- W3124451696 hasConcept C154945302 @default.
- W3124451696 hasConcept C2779399171 @default.
- W3124451696 hasConcept C41008148 @default.
- W3124451696 hasConcept C50644808 @default.
- W3124451696 hasConcept C530470458 @default.
- W3124451696 hasConcept C71924100 @default.
- W3124451696 hasConcept C81363708 @default.
- W3124451696 hasConceptScore W3124451696C108583219 @default.
- W3124451696 hasConceptScore W3124451696C119857082 @default.
- W3124451696 hasConceptScore W3124451696C121608353 @default.
- W3124451696 hasConceptScore W3124451696C126322002 @default.
- W3124451696 hasConceptScore W3124451696C142724271 @default.
- W3124451696 hasConceptScore W3124451696C153180895 @default.
- W3124451696 hasConceptScore W3124451696C154945302 @default.
- W3124451696 hasConceptScore W3124451696C2779399171 @default.
- W3124451696 hasConceptScore W3124451696C41008148 @default.
- W3124451696 hasConceptScore W3124451696C50644808 @default.
- W3124451696 hasConceptScore W3124451696C530470458 @default.
- W3124451696 hasConceptScore W3124451696C71924100 @default.
- W3124451696 hasConceptScore W3124451696C81363708 @default.
- W3124451696 hasLocation W31244516961 @default.
- W3124451696 hasOpenAccess W3124451696 @default.
- W3124451696 hasPrimaryLocation W31244516961 @default.
- W3124451696 hasRelatedWork W2337926734 @default.
- W3124451696 hasRelatedWork W2732542196 @default.
- W3124451696 hasRelatedWork W2738221750 @default.
- W3124451696 hasRelatedWork W2963958939 @default.
- W3124451696 hasRelatedWork W3173182854 @default.
- W3124451696 hasRelatedWork W4311257506 @default.
- W3124451696 hasRelatedWork W4319994054 @default.
- W3124451696 hasRelatedWork W4320802194 @default.
- W3124451696 hasRelatedWork W4366224123 @default.
- W3124451696 hasRelatedWork W564581980 @default.
- W3124451696 isParatext "false" @default.
- W3124451696 isRetracted "false" @default.
- W3124451696 magId "3124451696" @default.
- W3124451696 workType "article" @default.