Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124548596> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3124548596 abstract "Dynamic stochastic general equilibrium models with heterogeneous agents and incomplete markets usually have to be solved numerically. Existing algorithms assume bounded rationality of the agents meaning that they only keep track of a limited number of moments of the cross-sectional distribution. In this paper, we do not take this assumption and derive a law of motion of the whole state distribution. The proposed algorithm jointly solves for a fixed point of the equilibrium's Euler equation and its distribution's law of motion. Convergence to the equilibrium's optimal policy and the stationary state distribution is shown. We compare our numerical solution to the most prominent existing algorithm, the Krusell-Smith algorithm. Apart from improved error distributions and Pareto-improved policies for our algorithm, we show that the Krusell-Smith algorithm does not converge when using the limit of its simulation step to obtain the law of motion. This paper presents a computational method for solving DSGE models with heterogeneous agents and incomplete markets mainly based on projection methods. One minor part of the algorithm relies on perturbation. Importantly, I show that this algorithm is a modification of the proximal point algorithm for which convergence results are well established. In this paper, I develop a novel solution algorithm to solve a wide group of DSGE models with heterogeneous agents and incomplete markets. There are three major differences to the existing algorithms, most prominently the cite{KS1998} algorithm. Firstly, this algorithm does not require bounded rationality of the agents and hence, it does not rely on an additional model assumption. Instead I solve for the original DGMM-recursive equilibrium where agents observe the full cross-sectional distribution. Economically, this leads to higher levels of consumption far any agent and is therefore Pareto-improving. However, even though this effect significantly changes the wealth distribution, it does not change the shape of the Lorenz curve towards a more realistic one. Because I do not abstract from the cross-sectional distribution, the whole state distribution is an integral part of my algorithm. I derive the theoretical law-of-motion operator for the stationary state distribution. The main difference to the existing algorithms' law of motions is that this operator looks at the joint distribution of aggregate and idiosyncratic exogenous shocks as well as endogenous variables whereas existing algorithms condition on simulated data of aggregate exogenous shocks or use perturbations around the aggregate shocks. The third difference is crucial for convergence. Our algorithm solves for the optimal policy and the stationary state distribution which together form a coupled system. This system is solved as a whole rather than component-wise as is the case in existing algorithms. The component-wise iterative approach, however, might not converge to a solution. I show in the last section that convergence is indeed a problem for the limiting Krusell-Smith algorithm. In contrast, convergence of the solution algorithm presented herein is proven mathematically. Therefore, when the approximation error is small, the numerical solution is indeed close to the exact equilibrium solution." @default.
- W3124548596 created "2021-02-01" @default.
- W3124548596 creator A5039385258 @default.
- W3124548596 date "2016-01-01" @default.
- W3124548596 modified "2023-09-23" @default.
- W3124548596 title "Computing the Cross-Sectional Distribution to Approximate Stationary Markov Equilibria with Heterogeneous Agents and Incomplete Markets" @default.
- W3124548596 hasPublicationYear "2016" @default.
- W3124548596 type Work @default.
- W3124548596 sameAs 3124548596 @default.
- W3124548596 citedByCount "0" @default.
- W3124548596 crossrefType "posted-content" @default.
- W3124548596 hasAuthorship W3124548596A5039385258 @default.
- W3124548596 hasConcept C109354906 @default.
- W3124548596 hasConcept C126255220 @default.
- W3124548596 hasConcept C126285488 @default.
- W3124548596 hasConcept C133425853 @default.
- W3124548596 hasConcept C134306372 @default.
- W3124548596 hasConcept C154945302 @default.
- W3124548596 hasConcept C162324750 @default.
- W3124548596 hasConcept C2777303404 @default.
- W3124548596 hasConcept C33923547 @default.
- W3124548596 hasConcept C34388435 @default.
- W3124548596 hasConcept C41008148 @default.
- W3124548596 hasConcept C489367 @default.
- W3124548596 hasConcept C50522688 @default.
- W3124548596 hasConcept C556758197 @default.
- W3124548596 hasConcept C58694771 @default.
- W3124548596 hasConceptScore W3124548596C109354906 @default.
- W3124548596 hasConceptScore W3124548596C126255220 @default.
- W3124548596 hasConceptScore W3124548596C126285488 @default.
- W3124548596 hasConceptScore W3124548596C133425853 @default.
- W3124548596 hasConceptScore W3124548596C134306372 @default.
- W3124548596 hasConceptScore W3124548596C154945302 @default.
- W3124548596 hasConceptScore W3124548596C162324750 @default.
- W3124548596 hasConceptScore W3124548596C2777303404 @default.
- W3124548596 hasConceptScore W3124548596C33923547 @default.
- W3124548596 hasConceptScore W3124548596C34388435 @default.
- W3124548596 hasConceptScore W3124548596C41008148 @default.
- W3124548596 hasConceptScore W3124548596C489367 @default.
- W3124548596 hasConceptScore W3124548596C50522688 @default.
- W3124548596 hasConceptScore W3124548596C556758197 @default.
- W3124548596 hasConceptScore W3124548596C58694771 @default.
- W3124548596 hasLocation W31245485961 @default.
- W3124548596 hasOpenAccess W3124548596 @default.
- W3124548596 hasPrimaryLocation W31245485961 @default.
- W3124548596 hasRelatedWork W1554616387 @default.
- W3124548596 hasRelatedWork W1563352973 @default.
- W3124548596 hasRelatedWork W185153019 @default.
- W3124548596 hasRelatedWork W1995436827 @default.
- W3124548596 hasRelatedWork W2012730730 @default.
- W3124548596 hasRelatedWork W2157128567 @default.
- W3124548596 hasRelatedWork W2189072651 @default.
- W3124548596 hasRelatedWork W2217778916 @default.
- W3124548596 hasRelatedWork W2339340656 @default.
- W3124548596 hasRelatedWork W2419610064 @default.
- W3124548596 hasRelatedWork W2777699058 @default.
- W3124548596 hasRelatedWork W2782757827 @default.
- W3124548596 hasRelatedWork W2784050628 @default.
- W3124548596 hasRelatedWork W2894597335 @default.
- W3124548596 hasRelatedWork W2950654794 @default.
- W3124548596 hasRelatedWork W3022871032 @default.
- W3124548596 hasRelatedWork W3132124496 @default.
- W3124548596 hasRelatedWork W3137334160 @default.
- W3124548596 hasRelatedWork W3144280466 @default.
- W3124548596 hasRelatedWork W225304519 @default.
- W3124548596 isParatext "false" @default.
- W3124548596 isRetracted "false" @default.
- W3124548596 magId "3124548596" @default.
- W3124548596 workType "article" @default.