Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124569105> ?p ?o ?g. }
- W3124569105 endingPage "100472" @default.
- W3124569105 startingPage "100472" @default.
- W3124569105 abstract "The Cerrado biome in Brazil is characterized by a mosaic of vegetation types similar to African savanna and has one of the highest levels of biodiversity in the world. Wildfires have historically contributed to shaping the natural vegetation and are now being used in the establishment and management of agricultural systems and pastures. Consequently, the fire regime has been changing over the last few decades and increasingly affecting native vegetation, natural habitats, and ecosystem services in tropical regions. Mapping fire dynamics and spatial distribution are crucial to assess impacts on ecosystems and to define and enforce strategies and measures of fire control and prevention. In this study, we developed an alternative approach for mapping burned areas in the Cerrado biome in Brazil, using Landsat imagery and Deep Learning algorithm, implemented on the Google Earth Engine and on Google Cloud Storage platform. We compared our mapping results with two Burned Area products developed by INPE (30 m resolution) and MODIS MCD64A1 Burned Area Product (500 m resolution). Additionally, we assessed the accuracies of these three mapping products using 2,200 validation points within the study area. By comparing our mapping result with MCD64A1 and INPE burn scar products, we estimated an average agreement of 34% for both. We observed that most mapping disagreements were mainly because of the effects of clouds/shadow conditions that affected the ability for spectral observations, differences in methodologies, and spatial resolution of each remotely sensed datasets used for mapping burned areas. Our validation results indicated an overall accuracy of 97% of our methodological approach for mapping burned areas and, therefore, it can be successfully applied across savanna regions. Our results showed that 202,230 km 2 was affected by fires within the Cerrado biome in 2017, in which 31% overlapped cropping lands (agricultural fields and pastures) and 67% overlapped various types of native vegetation (forest, savanna and grassland). Our proposed methodological approach and its results can be useful to enforce environmental command and control policies and to estimate carbon emissions, analyses interactions between climate and ecological drivers of fire, develop predictive models of fire risk dynamics, and providing spatial information that can help public policies and fire management/prevention actions for the Cerrado conservation. • Development of a new approach for mapping burn scars in the Brazilian Savannah. • Use of Google Earth Engine, Google Cloud Storage platform, Landsat imagery, and Deep Learning to map burn scars. • A total of 202,230 km² was affected by fires within the Cerrado biome in 2017. • 31% and 67% of burned areas overlapped cropping lands and various types of native vegetation, respectively." @default.
- W3124569105 created "2021-02-01" @default.
- W3124569105 creator A5025606419 @default.
- W3124569105 creator A5038931700 @default.
- W3124569105 creator A5063582584 @default.
- W3124569105 creator A5071960252 @default.
- W3124569105 creator A5090026951 @default.
- W3124569105 date "2021-04-01" @default.
- W3124569105 modified "2023-10-05" @default.
- W3124569105 title "An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna" @default.
- W3124569105 cites W180836830 @default.
- W3124569105 cites W1970905384 @default.
- W3124569105 cites W1982041374 @default.
- W3124569105 cites W1985809628 @default.
- W3124569105 cites W2027642249 @default.
- W3124569105 cites W2030851497 @default.
- W3124569105 cites W2066155768 @default.
- W3124569105 cites W2081758500 @default.
- W3124569105 cites W2091853161 @default.
- W3124569105 cites W2105466827 @default.
- W3124569105 cites W2110554497 @default.
- W3124569105 cites W2131491776 @default.
- W3124569105 cites W2151396518 @default.
- W3124569105 cites W2164301138 @default.
- W3124569105 cites W2295931476 @default.
- W3124569105 cites W2579878226 @default.
- W3124569105 cites W2600468279 @default.
- W3124569105 cites W2602033978 @default.
- W3124569105 cites W2725897987 @default.
- W3124569105 cites W2732607881 @default.
- W3124569105 cites W2770853283 @default.
- W3124569105 cites W2918858427 @default.
- W3124569105 cites W2919115771 @default.
- W3124569105 cites W2965951776 @default.
- W3124569105 cites W3011435629 @default.
- W3124569105 cites W3055975969 @default.
- W3124569105 doi "https://doi.org/10.1016/j.rsase.2021.100472" @default.
- W3124569105 hasPublicationYear "2021" @default.
- W3124569105 type Work @default.
- W3124569105 sameAs 3124569105 @default.
- W3124569105 citedByCount "13" @default.
- W3124569105 countsByYear W31245691052021 @default.
- W3124569105 countsByYear W31245691052022 @default.
- W3124569105 countsByYear W31245691052023 @default.
- W3124569105 crossrefType "journal-article" @default.
- W3124569105 hasAuthorship W3124569105A5025606419 @default.
- W3124569105 hasAuthorship W3124569105A5038931700 @default.
- W3124569105 hasAuthorship W3124569105A5063582584 @default.
- W3124569105 hasAuthorship W3124569105A5071960252 @default.
- W3124569105 hasAuthorship W3124569105A5090026951 @default.
- W3124569105 hasBestOaLocation W31245691051 @default.
- W3124569105 hasConcept C100970517 @default.
- W3124569105 hasConcept C110872660 @default.
- W3124569105 hasConcept C127413603 @default.
- W3124569105 hasConcept C142724271 @default.
- W3124569105 hasConcept C146978453 @default.
- W3124569105 hasConcept C18903297 @default.
- W3124569105 hasConcept C19269812 @default.
- W3124569105 hasConcept C205649164 @default.
- W3124569105 hasConcept C2776133958 @default.
- W3124569105 hasConcept C39399123 @default.
- W3124569105 hasConcept C39432304 @default.
- W3124569105 hasConcept C535291247 @default.
- W3124569105 hasConcept C58640448 @default.
- W3124569105 hasConcept C58941895 @default.
- W3124569105 hasConcept C62649853 @default.
- W3124569105 hasConcept C71924100 @default.
- W3124569105 hasConcept C86803240 @default.
- W3124569105 hasConcept C89920630 @default.
- W3124569105 hasConceptScore W3124569105C100970517 @default.
- W3124569105 hasConceptScore W3124569105C110872660 @default.
- W3124569105 hasConceptScore W3124569105C127413603 @default.
- W3124569105 hasConceptScore W3124569105C142724271 @default.
- W3124569105 hasConceptScore W3124569105C146978453 @default.
- W3124569105 hasConceptScore W3124569105C18903297 @default.
- W3124569105 hasConceptScore W3124569105C19269812 @default.
- W3124569105 hasConceptScore W3124569105C205649164 @default.
- W3124569105 hasConceptScore W3124569105C2776133958 @default.
- W3124569105 hasConceptScore W3124569105C39399123 @default.
- W3124569105 hasConceptScore W3124569105C39432304 @default.
- W3124569105 hasConceptScore W3124569105C535291247 @default.
- W3124569105 hasConceptScore W3124569105C58640448 @default.
- W3124569105 hasConceptScore W3124569105C58941895 @default.
- W3124569105 hasConceptScore W3124569105C62649853 @default.
- W3124569105 hasConceptScore W3124569105C71924100 @default.
- W3124569105 hasConceptScore W3124569105C86803240 @default.
- W3124569105 hasConceptScore W3124569105C89920630 @default.
- W3124569105 hasFunder F4320315140 @default.
- W3124569105 hasFunder F4320316481 @default.
- W3124569105 hasFunder F4320322025 @default.
- W3124569105 hasFunder F4320323350 @default.
- W3124569105 hasLocation W31245691051 @default.
- W3124569105 hasOpenAccess W3124569105 @default.
- W3124569105 hasPrimaryLocation W31245691051 @default.
- W3124569105 hasRelatedWork W1729731835 @default.
- W3124569105 hasRelatedWork W1991531644 @default.
- W3124569105 hasRelatedWork W2131235243 @default.
- W3124569105 hasRelatedWork W2341163659 @default.