Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124618466> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3124618466 endingPage "012084" @default.
- W3124618466 startingPage "012084" @default.
- W3124618466 abstract "Abstract In data analysis it is common to assume that data are generated from one population. However, due to some underlying factors, data might come from several sources that should be considered as several sub-populations. Partitioning methods such as k-means clustering, as well as hierarchical clustering, are two commonly used methods for identifying data grouping. The grouping is done based on distance between observations. We discuss alternative means of data grouping, based on data distribution, known as Finite Mixture Model. Parameter estimation will be done using the Bayesian approach. Incorporation of prior distribution on the parameter of interest will complete data information from the sample, resulting in updated information in the form of posterior distribution. Gaussian distribution is assumed for the sampling model. Markov Chain Monte Carlo with Gibbs Sampling algorithm is implemented for sampling from the posterior distribution. Data on wave sensitivity on monkeys’ eyes were used to illustrate the method." @default.
- W3124618466 created "2021-02-01" @default.
- W3124618466 creator A5039743547 @default.
- W3124618466 creator A5062589666 @default.
- W3124618466 date "2021-01-01" @default.
- W3124618466 modified "2023-09-24" @default.
- W3124618466 title "Bayesian gaussian finite mixture model" @default.
- W3124618466 cites W2168331993 @default.
- W3124618466 cites W4232188727 @default.
- W3124618466 doi "https://doi.org/10.1088/1742-6596/1725/1/012084" @default.
- W3124618466 hasPublicationYear "2021" @default.
- W3124618466 type Work @default.
- W3124618466 sameAs 3124618466 @default.
- W3124618466 citedByCount "1" @default.
- W3124618466 countsByYear W31246184662022 @default.
- W3124618466 crossrefType "journal-article" @default.
- W3124618466 hasAuthorship W3124618466A5039743547 @default.
- W3124618466 hasAuthorship W3124618466A5062589666 @default.
- W3124618466 hasBestOaLocation W31246184661 @default.
- W3124618466 hasConcept C105795698 @default.
- W3124618466 hasConcept C106131492 @default.
- W3124618466 hasConcept C107673813 @default.
- W3124618466 hasConcept C111350023 @default.
- W3124618466 hasConcept C11413529 @default.
- W3124618466 hasConcept C124101348 @default.
- W3124618466 hasConcept C140779682 @default.
- W3124618466 hasConcept C154945302 @default.
- W3124618466 hasConcept C158424031 @default.
- W3124618466 hasConcept C160234255 @default.
- W3124618466 hasConcept C191413810 @default.
- W3124618466 hasConcept C31972630 @default.
- W3124618466 hasConcept C33923547 @default.
- W3124618466 hasConcept C37903108 @default.
- W3124618466 hasConcept C41008148 @default.
- W3124618466 hasConcept C57830394 @default.
- W3124618466 hasConcept C61224824 @default.
- W3124618466 hasConcept C67926830 @default.
- W3124618466 hasConcept C73555534 @default.
- W3124618466 hasConcept C83247935 @default.
- W3124618466 hasConceptScore W3124618466C105795698 @default.
- W3124618466 hasConceptScore W3124618466C106131492 @default.
- W3124618466 hasConceptScore W3124618466C107673813 @default.
- W3124618466 hasConceptScore W3124618466C111350023 @default.
- W3124618466 hasConceptScore W3124618466C11413529 @default.
- W3124618466 hasConceptScore W3124618466C124101348 @default.
- W3124618466 hasConceptScore W3124618466C140779682 @default.
- W3124618466 hasConceptScore W3124618466C154945302 @default.
- W3124618466 hasConceptScore W3124618466C158424031 @default.
- W3124618466 hasConceptScore W3124618466C160234255 @default.
- W3124618466 hasConceptScore W3124618466C191413810 @default.
- W3124618466 hasConceptScore W3124618466C31972630 @default.
- W3124618466 hasConceptScore W3124618466C33923547 @default.
- W3124618466 hasConceptScore W3124618466C37903108 @default.
- W3124618466 hasConceptScore W3124618466C41008148 @default.
- W3124618466 hasConceptScore W3124618466C57830394 @default.
- W3124618466 hasConceptScore W3124618466C61224824 @default.
- W3124618466 hasConceptScore W3124618466C67926830 @default.
- W3124618466 hasConceptScore W3124618466C73555534 @default.
- W3124618466 hasConceptScore W3124618466C83247935 @default.
- W3124618466 hasIssue "1" @default.
- W3124618466 hasLocation W31246184661 @default.
- W3124618466 hasOpenAccess W3124618466 @default.
- W3124618466 hasPrimaryLocation W31246184661 @default.
- W3124618466 hasRelatedWork W1514627977 @default.
- W3124618466 hasRelatedWork W2124980073 @default.
- W3124618466 hasRelatedWork W2408349094 @default.
- W3124618466 hasRelatedWork W2803685366 @default.
- W3124618466 hasRelatedWork W2887424114 @default.
- W3124618466 hasRelatedWork W2994316600 @default.
- W3124618466 hasRelatedWork W3124618466 @default.
- W3124618466 hasRelatedWork W4240424330 @default.
- W3124618466 hasRelatedWork W4244110343 @default.
- W3124618466 hasRelatedWork W1568844024 @default.
- W3124618466 hasVolume "1725" @default.
- W3124618466 isParatext "false" @default.
- W3124618466 isRetracted "false" @default.
- W3124618466 magId "3124618466" @default.
- W3124618466 workType "article" @default.