Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124656256> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3124656256 abstract "Visual-inertial integrated navigation system (VINS) has been extensively studied over the past decades to provide accurate and low-cost positioning solutions for autonomous systems. Satisfactory performance can be obtained in an ideal scenario with sufficient and static environment features. However, there are usually numerous dynamic objects in deep urban areas, and these moving objects can severely distort the feature tracking process which is fatal to the feature-based VINS. The well-known method mitigates the effects of dynamic objects is to detect the vehicles using deep neural networks and remove the features belongs to the surrounding vehicle. However, excessive exclusion of features can severely distort the geometry of feature distribution, leading to limited visual measurements. Instead of directly eliminating the features from dynamic objects, this paper proposes to adopt the visual measurement model based on the quality of feature tracking to improve the performance of VINS. Firstly, a self-tuning covariance estimation approach is proposed to model the uncertainty of each feature measurements by integrating two parts: 1) the geometry of feature distribution (GFD), 2) the quality of feature tracking. Secondly, an adaptive M-estimator is proposed to correct the measurement residual model to further mitigate the impacts of outlier measurements, such as the dynamic features. Different from the conventional M-estimator, the proposed method effectively alleviates the reliance of excessive parameterization of M-estimator. Experiments are conducted in a typical urban area of Hong Kong with numerous dynamic objects, and the results show that the proposed method could effectively mitigate the effects of dynamic objects and improved accuracy of VINS is obtained when compared with the conventional method." @default.
- W3124656256 created "2021-02-01" @default.
- W3124656256 creator A5044957601 @default.
- W3124656256 creator A5045346492 @default.
- W3124656256 creator A5055217506 @default.
- W3124656256 date "2020-03-02" @default.
- W3124656256 modified "2023-10-16" @default.
- W3124656256 title "Robust Visual-Inertial Integrated Navigation System Aided by Online Sensor Model Adaption for Autonomous Ground Vehicles in Urban Areas" @default.
- W3124656256 doi "https://doi.org/10.20944/preprints202003.0018.v1" @default.
- W3124656256 hasPublicationYear "2020" @default.
- W3124656256 type Work @default.
- W3124656256 sameAs 3124656256 @default.
- W3124656256 citedByCount "0" @default.
- W3124656256 crossrefType "posted-content" @default.
- W3124656256 hasAuthorship W3124656256A5044957601 @default.
- W3124656256 hasAuthorship W3124656256A5045346492 @default.
- W3124656256 hasAuthorship W3124656256A5055217506 @default.
- W3124656256 hasBestOaLocation W31246562561 @default.
- W3124656256 hasConcept C105795698 @default.
- W3124656256 hasConcept C111919701 @default.
- W3124656256 hasConcept C138885662 @default.
- W3124656256 hasConcept C154945302 @default.
- W3124656256 hasConcept C185429906 @default.
- W3124656256 hasConcept C2776401178 @default.
- W3124656256 hasConcept C31972630 @default.
- W3124656256 hasConcept C33923547 @default.
- W3124656256 hasConcept C41008148 @default.
- W3124656256 hasConcept C41895202 @default.
- W3124656256 hasConcept C79061980 @default.
- W3124656256 hasConcept C79337645 @default.
- W3124656256 hasConcept C98045186 @default.
- W3124656256 hasConceptScore W3124656256C105795698 @default.
- W3124656256 hasConceptScore W3124656256C111919701 @default.
- W3124656256 hasConceptScore W3124656256C138885662 @default.
- W3124656256 hasConceptScore W3124656256C154945302 @default.
- W3124656256 hasConceptScore W3124656256C185429906 @default.
- W3124656256 hasConceptScore W3124656256C2776401178 @default.
- W3124656256 hasConceptScore W3124656256C31972630 @default.
- W3124656256 hasConceptScore W3124656256C33923547 @default.
- W3124656256 hasConceptScore W3124656256C41008148 @default.
- W3124656256 hasConceptScore W3124656256C41895202 @default.
- W3124656256 hasConceptScore W3124656256C79061980 @default.
- W3124656256 hasConceptScore W3124656256C79337645 @default.
- W3124656256 hasConceptScore W3124656256C98045186 @default.
- W3124656256 hasLocation W31246562561 @default.
- W3124656256 hasLocation W31246562562 @default.
- W3124656256 hasOpenAccess W3124656256 @default.
- W3124656256 hasPrimaryLocation W31246562561 @default.
- W3124656256 hasRelatedWork W11437179 @default.
- W3124656256 hasRelatedWork W12452974 @default.
- W3124656256 hasRelatedWork W2769812 @default.
- W3124656256 hasRelatedWork W571879 @default.
- W3124656256 hasRelatedWork W6930659 @default.
- W3124656256 hasRelatedWork W7162802 @default.
- W3124656256 hasRelatedWork W7657724 @default.
- W3124656256 hasRelatedWork W851276 @default.
- W3124656256 hasRelatedWork W8656678 @default.
- W3124656256 hasRelatedWork W3561445 @default.
- W3124656256 isParatext "false" @default.
- W3124656256 isRetracted "false" @default.
- W3124656256 magId "3124656256" @default.
- W3124656256 workType "article" @default.