Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124698940> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3124698940 endingPage "4990" @default.
- W3124698940 startingPage "4980" @default.
- W3124698940 abstract "<h2>ABSTRACT</h2> Accurately identifying pregnancy status is imperative for a profitable dairy enterprise. Mid-infrared (MIR) spectroscopy is routinely used to determine fat and protein concentrations in milk samples. Mid-infrared spectra have successfully been used to predict other economically important traits, including fatty acid content, mineral content, body energy status, lactoferrin, feed intake, and methane emissions. Machine learning has been used in a variety of fields to find patterns in vast quantities of data. This study aims to use deep learning, a sub-branch of machine learning, to establish pregnancy status from routinely collected milk MIR spectral data. Milk spectral data were obtained from National Milk Records (Chippenham, UK), who collect large volumes of data continuously on a monthly basis. Two approaches were followed: using genetic algorithms for feature selection and network design (model 1), and transfer learning with a pretrained DenseNet model (model 2). Feature selection in model 1 showed that the number of wave points in MIR data could be reduced from 1,060 to 196 wave points. The trained model converged after 162 epochs with validation accuracy and loss of 0.89 and 0.18, respectively. Although the accuracy was sufficiently high, the loss (in terms of predicting only 2 labels) was considered too high and suggested that the model would not be robust enough to apply to industry. Model 2 was trained in 2 stages of 100 epochs each with spectral data converted to gray-scale images and resulted in accuracy and loss of 0.97 and 0.08, respectively. Inspection on inference data showed prediction sensitivity of 0.89, specificity of 0.86, and prediction accuracy of 0.88. Results indicate that milk MIR data contains features relating to pregnancy status and the underlying metabolic changes in dairy cows, and such features can be identified by means of deep learning. Prediction equations from trained models can be used to alert farmers of nonviable pregnancies as well as to verify conception dates." @default.
- W3124698940 created "2021-02-01" @default.
- W3124698940 creator A5023632825 @default.
- W3124698940 creator A5044519232 @default.
- W3124698940 creator A5052357861 @default.
- W3124698940 creator A5058891795 @default.
- W3124698940 creator A5075746731 @default.
- W3124698940 creator A5081306335 @default.
- W3124698940 date "2021-04-01" @default.
- W3124698940 modified "2023-10-17" @default.
- W3124698940 title "Predicting pregnancy status from mid-infrared spectroscopy in dairy cow milk using deep learning" @default.
- W3124698940 cites W1990208522 @default.
- W3124698940 cites W2004176658 @default.
- W3124698940 cites W2025556476 @default.
- W3124698940 cites W2038242845 @default.
- W3124698940 cites W2053559523 @default.
- W3124698940 cites W2089536893 @default.
- W3124698940 cites W2101603862 @default.
- W3124698940 cites W2103637886 @default.
- W3124698940 cites W2118051155 @default.
- W3124698940 cites W2144934334 @default.
- W3124698940 cites W2148370581 @default.
- W3124698940 cites W2165698076 @default.
- W3124698940 cites W2292713886 @default.
- W3124698940 cites W2317875763 @default.
- W3124698940 cites W2400114388 @default.
- W3124698940 cites W2511108650 @default.
- W3124698940 cites W2582940098 @default.
- W3124698940 cites W2601890569 @default.
- W3124698940 cites W2760925061 @default.
- W3124698940 cites W2780934445 @default.
- W3124698940 cites W2919115771 @default.
- W3124698940 cites W2978766740 @default.
- W3124698940 cites W3005480524 @default.
- W3124698940 cites W3006436762 @default.
- W3124698940 cites W3069362868 @default.
- W3124698940 doi "https://doi.org/10.3168/jds.2020-18367" @default.
- W3124698940 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33485687" @default.
- W3124698940 hasPublicationYear "2021" @default.
- W3124698940 type Work @default.
- W3124698940 sameAs 3124698940 @default.
- W3124698940 citedByCount "21" @default.
- W3124698940 countsByYear W31246989402021 @default.
- W3124698940 countsByYear W31246989402022 @default.
- W3124698940 countsByYear W31246989402023 @default.
- W3124698940 crossrefType "journal-article" @default.
- W3124698940 hasAuthorship W3124698940A5023632825 @default.
- W3124698940 hasAuthorship W3124698940A5044519232 @default.
- W3124698940 hasAuthorship W3124698940A5052357861 @default.
- W3124698940 hasAuthorship W3124698940A5058891795 @default.
- W3124698940 hasAuthorship W3124698940A5075746731 @default.
- W3124698940 hasAuthorship W3124698940A5081306335 @default.
- W3124698940 hasBestOaLocation W31246989401 @default.
- W3124698940 hasConcept C119857082 @default.
- W3124698940 hasConcept C138885662 @default.
- W3124698940 hasConcept C148483581 @default.
- W3124698940 hasConcept C154945302 @default.
- W3124698940 hasConcept C2776401178 @default.
- W3124698940 hasConcept C33923547 @default.
- W3124698940 hasConcept C41008148 @default.
- W3124698940 hasConcept C41895202 @default.
- W3124698940 hasConceptScore W3124698940C119857082 @default.
- W3124698940 hasConceptScore W3124698940C138885662 @default.
- W3124698940 hasConceptScore W3124698940C148483581 @default.
- W3124698940 hasConceptScore W3124698940C154945302 @default.
- W3124698940 hasConceptScore W3124698940C2776401178 @default.
- W3124698940 hasConceptScore W3124698940C33923547 @default.
- W3124698940 hasConceptScore W3124698940C41008148 @default.
- W3124698940 hasConceptScore W3124698940C41895202 @default.
- W3124698940 hasFunder F4320334629 @default.
- W3124698940 hasIssue "4" @default.
- W3124698940 hasLocation W31246989401 @default.
- W3124698940 hasOpenAccess W3124698940 @default.
- W3124698940 hasPrimaryLocation W31246989401 @default.
- W3124698940 hasRelatedWork W2973799232 @default.
- W3124698940 hasRelatedWork W3016925281 @default.
- W3124698940 hasRelatedWork W3087493185 @default.
- W3124698940 hasRelatedWork W3160244858 @default.
- W3124698940 hasRelatedWork W3163334550 @default.
- W3124698940 hasRelatedWork W3174196512 @default.
- W3124698940 hasRelatedWork W3200179079 @default.
- W3124698940 hasRelatedWork W4212852473 @default.
- W3124698940 hasRelatedWork W4225360065 @default.
- W3124698940 hasRelatedWork W4295514622 @default.
- W3124698940 hasVolume "104" @default.
- W3124698940 isParatext "false" @default.
- W3124698940 isRetracted "false" @default.
- W3124698940 magId "3124698940" @default.
- W3124698940 workType "article" @default.