Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124721446> ?p ?o ?g. }
- W3124721446 endingPage "38" @default.
- W3124721446 startingPage "30" @default.
- W3124721446 abstract "The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role in modeling and data mining of climatic phenomena as a result of their significant advantages, including their availability and analysis. Therefore, addressing the improvement and expansion of machine learning methods and modeling algorithms using remote sensing data is inevitable. In this study, 7 well-known machine learning algorithms are applied with different initial data to show that satellite images are able to estimate the combined indices more accurately. A new index (HT) is also defined by combining the quantities of relative humidity and temperature. Then, machine learning algorithms are trained for each of these three quantities. For each of the temperature and relative humidity quantities, four optimal bands were selected using the PCA method, then a combination of these optimal bands was determined for the HT index. Two criteria are used to validate the results: Root Mean Square Error (RMSE) statistic and comparing the map of the interpolation method with the result of this study. RMSE values show that satellite imagery could have a high ability to model and estimate composite indices. Classification-KNN-Coarse and Ensemble-Bagged Trees with accuracy of 79.8626 % and 84.9281% are identified as the best machine learning methods for temperature and relative humidity, while the best accuracy to estimate the HT index is 92.8792% for Matern 5/2 GPR. Therefore, it can be said that by changing the methods of database preparation, the modeling results can be changed effectively in order to train models." @default.
- W3124721446 created "2021-02-01" @default.
- W3124721446 creator A5021176871 @default.
- W3124721446 creator A5024515795 @default.
- W3124721446 date "2019-09-01" @default.
- W3124721446 modified "2023-09-24" @default.
- W3124721446 title "Evaluating machine learning methods and satellite images to estimate combined climatic indices" @default.
- W3124721446 cites W1978034823 @default.
- W3124721446 cites W1997052242 @default.
- W3124721446 cites W2010876855 @default.
- W3124721446 cites W2013355544 @default.
- W3124721446 cites W2014847057 @default.
- W3124721446 cites W2018163757 @default.
- W3124721446 cites W2018342024 @default.
- W3124721446 cites W2019207321 @default.
- W3124721446 cites W2039574924 @default.
- W3124721446 cites W2055308682 @default.
- W3124721446 cites W2074379462 @default.
- W3124721446 cites W2102139392 @default.
- W3124721446 cites W2110588864 @default.
- W3124721446 cites W2170100555 @default.
- W3124721446 cites W2278830514 @default.
- W3124721446 cites W2295124130 @default.
- W3124721446 cites W2481324571 @default.
- W3124721446 cites W2494961988 @default.
- W3124721446 cites W2617868146 @default.
- W3124721446 cites W2744517940 @default.
- W3124721446 cites W2750642280 @default.
- W3124721446 cites W2767864371 @default.
- W3124721446 cites W2769555774 @default.
- W3124721446 cites W2790942315 @default.
- W3124721446 cites W2799674728 @default.
- W3124721446 cites W2887176132 @default.
- W3124721446 cites W2893011787 @default.
- W3124721446 cites W3087102666 @default.
- W3124721446 cites W416631514 @default.
- W3124721446 cites W4252019146 @default.
- W3124721446 cites W836867855 @default.
- W3124721446 doi "https://doi.org/10.52547/nmce.4.1.30" @default.
- W3124721446 hasPublicationYear "2019" @default.
- W3124721446 type Work @default.
- W3124721446 sameAs 3124721446 @default.
- W3124721446 citedByCount "5" @default.
- W3124721446 countsByYear W31247214462019 @default.
- W3124721446 countsByYear W31247214462021 @default.
- W3124721446 countsByYear W31247214462022 @default.
- W3124721446 countsByYear W31247214462023 @default.
- W3124721446 crossrefType "journal-article" @default.
- W3124721446 hasAuthorship W3124721446A5021176871 @default.
- W3124721446 hasAuthorship W3124721446A5024515795 @default.
- W3124721446 hasBestOaLocation W31247214461 @default.
- W3124721446 hasConcept C105795698 @default.
- W3124721446 hasConcept C11413529 @default.
- W3124721446 hasConcept C115961682 @default.
- W3124721446 hasConcept C119857082 @default.
- W3124721446 hasConcept C124101348 @default.
- W3124721446 hasConcept C127413603 @default.
- W3124721446 hasConcept C137800194 @default.
- W3124721446 hasConcept C139945424 @default.
- W3124721446 hasConcept C146978453 @default.
- W3124721446 hasConcept C153180895 @default.
- W3124721446 hasConcept C154945302 @default.
- W3124721446 hasConcept C19269812 @default.
- W3124721446 hasConcept C205649164 @default.
- W3124721446 hasConcept C33923547 @default.
- W3124721446 hasConcept C41008148 @default.
- W3124721446 hasConcept C62649853 @default.
- W3124721446 hasConcept C89128539 @default.
- W3124721446 hasConceptScore W3124721446C105795698 @default.
- W3124721446 hasConceptScore W3124721446C11413529 @default.
- W3124721446 hasConceptScore W3124721446C115961682 @default.
- W3124721446 hasConceptScore W3124721446C119857082 @default.
- W3124721446 hasConceptScore W3124721446C124101348 @default.
- W3124721446 hasConceptScore W3124721446C127413603 @default.
- W3124721446 hasConceptScore W3124721446C137800194 @default.
- W3124721446 hasConceptScore W3124721446C139945424 @default.
- W3124721446 hasConceptScore W3124721446C146978453 @default.
- W3124721446 hasConceptScore W3124721446C153180895 @default.
- W3124721446 hasConceptScore W3124721446C154945302 @default.
- W3124721446 hasConceptScore W3124721446C19269812 @default.
- W3124721446 hasConceptScore W3124721446C205649164 @default.
- W3124721446 hasConceptScore W3124721446C33923547 @default.
- W3124721446 hasConceptScore W3124721446C41008148 @default.
- W3124721446 hasConceptScore W3124721446C62649853 @default.
- W3124721446 hasConceptScore W3124721446C89128539 @default.
- W3124721446 hasIssue "1" @default.
- W3124721446 hasLocation W31247214461 @default.
- W3124721446 hasOpenAccess W3124721446 @default.
- W3124721446 hasPrimaryLocation W31247214461 @default.
- W3124721446 hasRelatedWork W2013329914 @default.
- W3124721446 hasRelatedWork W2392383081 @default.
- W3124721446 hasRelatedWork W2888123691 @default.
- W3124721446 hasRelatedWork W2899369595 @default.
- W3124721446 hasRelatedWork W2961085424 @default.
- W3124721446 hasRelatedWork W2995227436 @default.
- W3124721446 hasRelatedWork W4225307033 @default.
- W3124721446 hasRelatedWork W4306674287 @default.
- W3124721446 hasRelatedWork W4308950918 @default.