Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124849400> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3124849400 endingPage "77" @default.
- W3124849400 startingPage "67" @default.
- W3124849400 abstract "Deep neural networks (DNNs) are powerful types of artificial neural networks (ANNs) that use several hidden layers. They have recently gained considerable attention in the speech transcription and image recognition community (Krizhevsky et al., 2012 ) for their superior predictive properties including robustness to overfitting. However their application to algorithmic trading has not been previously researched, partly because of their computational complexity. This paper describes the application of DNNs to predicting financial market movement directions. In particular we describe the configuration and training approach and then demonstrate their application to backtesting a simple trading strategy over 43 different Commodity and FX future mid-prices at 5-minute intervals. All results in this paper are generated using a C++ implementation on the Intel Xeon Phi co-processor which is 11.4x faster than the serial version and a Python strategy backtesting environment both of which are available as open source code written by the authors." @default.
- W3124849400 created "2021-02-01" @default.
- W3124849400 creator A5002954193 @default.
- W3124849400 creator A5013049879 @default.
- W3124849400 creator A5036435050 @default.
- W3124849400 date "2017-12-21" @default.
- W3124849400 modified "2023-09-30" @default.
- W3124849400 title "Classification-based financial markets prediction using deep neural networks" @default.
- W3124849400 cites W1983925612 @default.
- W3124849400 cites W2009991913 @default.
- W3124849400 cites W2072566913 @default.
- W3124849400 cites W2089942891 @default.
- W3124849400 cites W2098063401 @default.
- W3124849400 cites W2122226354 @default.
- W3124849400 cites W2145856394 @default.
- W3124849400 cites W3122224265 @default.
- W3124849400 cites W3124185353 @default.
- W3124849400 cites W4252473368 @default.
- W3124849400 doi "https://doi.org/10.3233/af-170176" @default.
- W3124849400 hasPublicationYear "2017" @default.
- W3124849400 type Work @default.
- W3124849400 sameAs 3124849400 @default.
- W3124849400 citedByCount "75" @default.
- W3124849400 countsByYear W31248494002016 @default.
- W3124849400 countsByYear W31248494002018 @default.
- W3124849400 countsByYear W31248494002019 @default.
- W3124849400 countsByYear W31248494002020 @default.
- W3124849400 countsByYear W31248494002021 @default.
- W3124849400 countsByYear W31248494002022 @default.
- W3124849400 countsByYear W31248494002023 @default.
- W3124849400 crossrefType "journal-article" @default.
- W3124849400 hasAuthorship W3124849400A5002954193 @default.
- W3124849400 hasAuthorship W3124849400A5013049879 @default.
- W3124849400 hasAuthorship W3124849400A5036435050 @default.
- W3124849400 hasBestOaLocation W31248494001 @default.
- W3124849400 hasConcept C10138342 @default.
- W3124849400 hasConcept C119857082 @default.
- W3124849400 hasConcept C144133560 @default.
- W3124849400 hasConcept C154945302 @default.
- W3124849400 hasConcept C19244329 @default.
- W3124849400 hasConcept C2984842247 @default.
- W3124849400 hasConcept C41008148 @default.
- W3124849400 hasConcept C50644808 @default.
- W3124849400 hasConceptScore W3124849400C10138342 @default.
- W3124849400 hasConceptScore W3124849400C119857082 @default.
- W3124849400 hasConceptScore W3124849400C144133560 @default.
- W3124849400 hasConceptScore W3124849400C154945302 @default.
- W3124849400 hasConceptScore W3124849400C19244329 @default.
- W3124849400 hasConceptScore W3124849400C2984842247 @default.
- W3124849400 hasConceptScore W3124849400C41008148 @default.
- W3124849400 hasConceptScore W3124849400C50644808 @default.
- W3124849400 hasIssue "3-4" @default.
- W3124849400 hasLocation W31248494001 @default.
- W3124849400 hasLocation W31248494002 @default.
- W3124849400 hasOpenAccess W3124849400 @default.
- W3124849400 hasPrimaryLocation W31248494001 @default.
- W3124849400 hasRelatedWork W2386387936 @default.
- W3124849400 hasRelatedWork W2961085424 @default.
- W3124849400 hasRelatedWork W3046775127 @default.
- W3124849400 hasRelatedWork W3170094116 @default.
- W3124849400 hasRelatedWork W4205958290 @default.
- W3124849400 hasRelatedWork W4285260836 @default.
- W3124849400 hasRelatedWork W4286629047 @default.
- W3124849400 hasRelatedWork W4306321456 @default.
- W3124849400 hasRelatedWork W4306674287 @default.
- W3124849400 hasRelatedWork W4224009465 @default.
- W3124849400 hasVolume "6" @default.
- W3124849400 isParatext "false" @default.
- W3124849400 isRetracted "false" @default.
- W3124849400 magId "3124849400" @default.
- W3124849400 workType "article" @default.