Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124924985> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3124924985 endingPage "012008" @default.
- W3124924985 startingPage "012008" @default.
- W3124924985 abstract "Recent years have seen a growing association between social media use and mental disorders. Experts opine that excessive use of social media sites has reached alarming levels, leading to Social Network Mental Disorders (SNMD). The Social Networking Sites (SNS) usage generates massive amount of complex data, which is difficult to analyze, find patterns within and make predictions manually, in turn making it difficult to detect SNMD in the SNS users. The paper summarizes the studies involved in the detection of mental disorders due to prolonged use of social networking sites and provides means of understanding an accurate predictive platform using data mining techniques to build machine-learning framework complementary to the conventional detection methods. We present an in-depth survey of the proposals that included the subtypes of SNMD in the SNS users – Cyber relationship addiction, Net compulsion, Information overload addiction, Cyber sex addiction and Computer addiction. The researchers bring forth models that integrate data mining techniques, Natural Language and computer vision programming tools, with social media and behaviour sciences, providing promising results. Data mining approaches to detect SNMD despite being challenging, are effective and can be used as an efficient tool. The challenges and issues related to automate the detection process is also analyzed in the paper. Thus we present that the automation of detection of SNMD in SNS users has potential to improve the existing health care systems." @default.
- W3124924985 created "2021-02-01" @default.
- W3124924985 creator A5001841366 @default.
- W3124924985 creator A5025811477 @default.
- W3124924985 date "2021-01-19" @default.
- W3124924985 modified "2023-10-15" @default.
- W3124924985 title "Automation of detection of social network mental disorders – A review" @default.
- W3124924985 cites W2021089996 @default.
- W3124924985 cites W2729451077 @default.
- W3124924985 cites W2778338093 @default.
- W3124924985 cites W2780483464 @default.
- W3124924985 cites W2781265533 @default.
- W3124924985 cites W2890929258 @default.
- W3124924985 cites W2893966636 @default.
- W3124924985 cites W2894331158 @default.
- W3124924985 cites W2912581524 @default.
- W3124924985 cites W2927590866 @default.
- W3124924985 cites W2936182428 @default.
- W3124924985 cites W2996899118 @default.
- W3124924985 cites W4237825334 @default.
- W3124924985 doi "https://doi.org/10.1088/1757-899x/1022/1/012008" @default.
- W3124924985 hasPublicationYear "2021" @default.
- W3124924985 type Work @default.
- W3124924985 sameAs 3124924985 @default.
- W3124924985 citedByCount "0" @default.
- W3124924985 crossrefType "journal-article" @default.
- W3124924985 hasAuthorship W3124924985A5001841366 @default.
- W3124924985 hasAuthorship W3124924985A5025811477 @default.
- W3124924985 hasBestOaLocation W31249249851 @default.
- W3124924985 hasConcept C108827166 @default.
- W3124924985 hasConcept C111919701 @default.
- W3124924985 hasConcept C115901376 @default.
- W3124924985 hasConcept C118552586 @default.
- W3124924985 hasConcept C119857082 @default.
- W3124924985 hasConcept C127413603 @default.
- W3124924985 hasConcept C134362201 @default.
- W3124924985 hasConcept C136764020 @default.
- W3124924985 hasConcept C15744967 @default.
- W3124924985 hasConcept C186625053 @default.
- W3124924985 hasConcept C2522767166 @default.
- W3124924985 hasConcept C41008148 @default.
- W3124924985 hasConcept C4727928 @default.
- W3124924985 hasConcept C48856860 @default.
- W3124924985 hasConcept C518677369 @default.
- W3124924985 hasConcept C78519656 @default.
- W3124924985 hasConcept C98045186 @default.
- W3124924985 hasConceptScore W3124924985C108827166 @default.
- W3124924985 hasConceptScore W3124924985C111919701 @default.
- W3124924985 hasConceptScore W3124924985C115901376 @default.
- W3124924985 hasConceptScore W3124924985C118552586 @default.
- W3124924985 hasConceptScore W3124924985C119857082 @default.
- W3124924985 hasConceptScore W3124924985C127413603 @default.
- W3124924985 hasConceptScore W3124924985C134362201 @default.
- W3124924985 hasConceptScore W3124924985C136764020 @default.
- W3124924985 hasConceptScore W3124924985C15744967 @default.
- W3124924985 hasConceptScore W3124924985C186625053 @default.
- W3124924985 hasConceptScore W3124924985C2522767166 @default.
- W3124924985 hasConceptScore W3124924985C41008148 @default.
- W3124924985 hasConceptScore W3124924985C4727928 @default.
- W3124924985 hasConceptScore W3124924985C48856860 @default.
- W3124924985 hasConceptScore W3124924985C518677369 @default.
- W3124924985 hasConceptScore W3124924985C78519656 @default.
- W3124924985 hasConceptScore W3124924985C98045186 @default.
- W3124924985 hasLocation W31249249851 @default.
- W3124924985 hasOpenAccess W3124924985 @default.
- W3124924985 hasPrimaryLocation W31249249851 @default.
- W3124924985 hasRelatedWork W1977921572 @default.
- W3124924985 hasRelatedWork W2046804949 @default.
- W3124924985 hasRelatedWork W2065099951 @default.
- W3124924985 hasRelatedWork W2748952813 @default.
- W3124924985 hasRelatedWork W4312470044 @default.
- W3124924985 hasRelatedWork W4361803406 @default.
- W3124924985 hasRelatedWork W56747513 @default.
- W3124924985 hasRelatedWork W57998245 @default.
- W3124924985 hasRelatedWork W2593441348 @default.
- W3124924985 hasRelatedWork W2993423439 @default.
- W3124924985 hasVolume "1022" @default.
- W3124924985 isParatext "false" @default.
- W3124924985 isRetracted "false" @default.
- W3124924985 magId "3124924985" @default.
- W3124924985 workType "article" @default.