Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124927342> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3124927342 abstract "Abstract The research landscape of single-cell and single-nuclei RNA sequencing is evolving rapidly, and one area that is enabled by this technology, is the detection of rare cells. An automated, unbiased and accurate annotation of rare subpopulations is challenging. Once rare cells are identified in one dataset, it will usually be necessary to generate other datasets to enrich the analysis (e.g., with samples from other tissues). From a machine learning perspective, the challenge arises from the fact that rare cell subpopulations constitute an imbalanced classification problem. We here introduce a Machine Learning (ML)-based oversampling method that uses gene expression counts of already identified rare cells as an input to generate synthetic cells to then identify similar (rare) cells in other publicly available experiments. We utilize single-cell synthetic oversampling (sc-SynO), which is based on the Localized Random Affine Shadowsampling (LoRAS) algorithm. The algorithm corrects for the overall imbalance ratio of the minority and majority class. We demonstrate the effectiveness of the method for two independent use cases, each consisting of two published datasets. The first use case identifies cardiac glial cells in snRNA-Seq data (17 nuclei out of 8,635). This use case was designed to take a larger imbalance ratio (∼1 to 500) into account and only uses single-nuclei data. The second use case was designed to jointly use snRNA-Seq data and scRNA-Seq on a lower imbalance ratio (∼1 to 26) for the training step to likewise investigate the potential of the algorithm to consider both single cell capture procedures and the impact of “less” rare-cell types. For validation purposes, all datasets have also been analyzed in a traditional manner using common data analysis approaches, such as the Seurat3 workflow. Our algorithm identifies rare-cell populations with a high accuracy and low false positive detection rate. A striking benefit of our algorithm is that it can be readily implemented in other and existing workflows. The code basis is publicly available at FairdomHub ( https://fairdomhub.org/assays/1368 ) and can easily be transferred to train other customized approaches." @default.
- W3124927342 created "2021-02-01" @default.
- W3124927342 creator A5022724143 @default.
- W3124927342 creator A5046944026 @default.
- W3124927342 creator A5062218486 @default.
- W3124927342 creator A5068934423 @default.
- W3124927342 creator A5073488671 @default.
- W3124927342 date "2021-01-21" @default.
- W3124927342 modified "2023-10-16" @default.
- W3124927342 title "Automated annotation of rare-cell types from single-cell RNA-sequencing data through synthetic oversampling" @default.
- W3124927342 cites W1577451703 @default.
- W3124927342 cites W191726569 @default.
- W3124927342 cites W1991181258 @default.
- W3124927342 cites W2104933073 @default.
- W3124927342 cites W2132791018 @default.
- W3124927342 cites W2148143831 @default.
- W3124927342 cites W2168508521 @default.
- W3124927342 cites W2894687190 @default.
- W3124927342 cites W2907783748 @default.
- W3124927342 cites W2955968749 @default.
- W3124927342 cites W3004105709 @default.
- W3124927342 cites W3005127469 @default.
- W3124927342 cites W3007874153 @default.
- W3124927342 cites W3008350048 @default.
- W3124927342 cites W3015100369 @default.
- W3124927342 cites W3023797901 @default.
- W3124927342 cites W4238363316 @default.
- W3124927342 cites W4251287806 @default.
- W3124927342 doi "https://doi.org/10.1101/2021.01.20.427486" @default.
- W3124927342 hasPublicationYear "2021" @default.
- W3124927342 type Work @default.
- W3124927342 sameAs 3124927342 @default.
- W3124927342 citedByCount "0" @default.
- W3124927342 crossrefType "posted-content" @default.
- W3124927342 hasAuthorship W3124927342A5022724143 @default.
- W3124927342 hasAuthorship W3124927342A5046944026 @default.
- W3124927342 hasAuthorship W3124927342A5062218486 @default.
- W3124927342 hasAuthorship W3124927342A5068934423 @default.
- W3124927342 hasAuthorship W3124927342A5073488671 @default.
- W3124927342 hasBestOaLocation W31249273421 @default.
- W3124927342 hasConcept C11413529 @default.
- W3124927342 hasConcept C119857082 @default.
- W3124927342 hasConcept C1491633281 @default.
- W3124927342 hasConcept C154945302 @default.
- W3124927342 hasConcept C160920958 @default.
- W3124927342 hasConcept C169258074 @default.
- W3124927342 hasConcept C189014844 @default.
- W3124927342 hasConcept C197323446 @default.
- W3124927342 hasConcept C2776257435 @default.
- W3124927342 hasConcept C2776321320 @default.
- W3124927342 hasConcept C31258907 @default.
- W3124927342 hasConcept C41008148 @default.
- W3124927342 hasConcept C54355233 @default.
- W3124927342 hasConcept C70721500 @default.
- W3124927342 hasConcept C86803240 @default.
- W3124927342 hasConceptScore W3124927342C11413529 @default.
- W3124927342 hasConceptScore W3124927342C119857082 @default.
- W3124927342 hasConceptScore W3124927342C1491633281 @default.
- W3124927342 hasConceptScore W3124927342C154945302 @default.
- W3124927342 hasConceptScore W3124927342C160920958 @default.
- W3124927342 hasConceptScore W3124927342C169258074 @default.
- W3124927342 hasConceptScore W3124927342C189014844 @default.
- W3124927342 hasConceptScore W3124927342C197323446 @default.
- W3124927342 hasConceptScore W3124927342C2776257435 @default.
- W3124927342 hasConceptScore W3124927342C2776321320 @default.
- W3124927342 hasConceptScore W3124927342C31258907 @default.
- W3124927342 hasConceptScore W3124927342C41008148 @default.
- W3124927342 hasConceptScore W3124927342C54355233 @default.
- W3124927342 hasConceptScore W3124927342C70721500 @default.
- W3124927342 hasConceptScore W3124927342C86803240 @default.
- W3124927342 hasLocation W31249273421 @default.
- W3124927342 hasOpenAccess W3124927342 @default.
- W3124927342 hasPrimaryLocation W31249273421 @default.
- W3124927342 hasRelatedWork W12010550 @default.
- W3124927342 hasRelatedWork W12146057 @default.
- W3124927342 hasRelatedWork W13188192 @default.
- W3124927342 hasRelatedWork W13692438 @default.
- W3124927342 hasRelatedWork W1472067 @default.
- W3124927342 hasRelatedWork W3858741 @default.
- W3124927342 hasRelatedWork W6479499 @default.
- W3124927342 hasRelatedWork W6655772 @default.
- W3124927342 hasRelatedWork W790158 @default.
- W3124927342 hasRelatedWork W2102732 @default.
- W3124927342 isParatext "false" @default.
- W3124927342 isRetracted "false" @default.
- W3124927342 magId "3124927342" @default.
- W3124927342 workType "article" @default.