Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124937987> ?p ?o ?g. }
- W3124937987 endingPage "2978" @default.
- W3124937987 startingPage "2967" @default.
- W3124937987 abstract "Very fast Monte Carlo (MC) simulations of proton transport have been implemented recently on graphics processing units (GPUs). However, these MCs usually use simplified models for nonelastic proton-nucleus interactions. Our primary goal is to build a GPU-based proton transport MC with detailed modeling of elastic and nonelastic proton-nucleus collisions.Using the cuda framework, the authors implemented GPU kernels for the following tasks: (1) simulation of beam spots from our possible scanning nozzle configurations, (2) proton propagation through CT geometry, taking into account nuclear elastic scattering, multiple scattering, and energy loss straggling, (3) modeling of the intranuclear cascade stage of nonelastic interactions when they occur, (4) simulation of nuclear evaporation, and (5) statistical error estimates on the dose. To validate our MC, the authors performed (1) secondary particle yield calculations in proton collisions with therapeutically relevant nuclei, (2) dose calculations in homogeneous phantoms, (3) recalculations of complex head and neck treatment plans from a commercially available treatment planning system, and compared with (GEANT)4.9.6p2/TOPAS.Yields, energy, and angular distributions of secondaries from nonelastic collisions on various nuclei are in good agreement with the (GEANT)4.9.6p2 Bertini and Binary cascade models. The 3D-gamma pass rate at 2%-2 mm for treatment plan simulations is typically 98%. The net computational time on a NVIDIA GTX680 card, including all CPU-GPU data transfers, is ∼ 20 s for 1 × 10(7) proton histories.Our GPU-based MC is the first of its kind to include a detailed nuclear model to handle nonelastic interactions of protons with any nucleus. Dosimetric calculations are in very good agreement with (GEANT)4.9.6p2/TOPAS. Our MC is being integrated into a framework to perform fast routine clinical QA of pencil-beam based treatment plans, and is being used as the dose calculation engine in a clinically applicable MC-based IMPT treatment planning system. The detailed nuclear modeling will allow us to perform very fast linear energy transfer and neutron dose estimates on the GPU." @default.
- W3124937987 created "2021-02-01" @default.
- W3124937987 creator A5023494901 @default.
- W3124937987 creator A5037788039 @default.
- W3124937987 creator A5040012120 @default.
- W3124937987 date "2015-05-21" @default.
- W3124937987 modified "2023-10-15" @default.
- W3124937987 title "A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions" @default.
- W3124937987 cites W1606278113 @default.
- W3124937987 cites W1967121735 @default.
- W3124937987 cites W1995280305 @default.
- W3124937987 cites W1999189079 @default.
- W3124937987 cites W2000076883 @default.
- W3124937987 cites W2001632405 @default.
- W3124937987 cites W2003440682 @default.
- W3124937987 cites W2007665989 @default.
- W3124937987 cites W2015290878 @default.
- W3124937987 cites W2030544564 @default.
- W3124937987 cites W2037543647 @default.
- W3124937987 cites W2038196526 @default.
- W3124937987 cites W2045243761 @default.
- W3124937987 cites W2045415729 @default.
- W3124937987 cites W2049275593 @default.
- W3124937987 cites W2062815412 @default.
- W3124937987 cites W2071632269 @default.
- W3124937987 cites W2074442330 @default.
- W3124937987 cites W2084904372 @default.
- W3124937987 cites W2085188303 @default.
- W3124937987 cites W2088530692 @default.
- W3124937987 cites W2094939267 @default.
- W3124937987 cites W2098736080 @default.
- W3124937987 cites W2155403967 @default.
- W3124937987 cites W2163470045 @default.
- W3124937987 cites W2163654397 @default.
- W3124937987 cites W2309267196 @default.
- W3124937987 cites W3138798301 @default.
- W3124937987 cites W4234242310 @default.
- W3124937987 cites W4378759106 @default.
- W3124937987 doi "https://doi.org/10.1118/1.4921046" @default.
- W3124937987 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26127050" @default.
- W3124937987 hasPublicationYear "2015" @default.
- W3124937987 type Work @default.
- W3124937987 sameAs 3124937987 @default.
- W3124937987 citedByCount "91" @default.
- W3124937987 countsByYear W31249379872015 @default.
- W3124937987 countsByYear W31249379872016 @default.
- W3124937987 countsByYear W31249379872017 @default.
- W3124937987 countsByYear W31249379872018 @default.
- W3124937987 countsByYear W31249379872019 @default.
- W3124937987 countsByYear W31249379872020 @default.
- W3124937987 countsByYear W31249379872021 @default.
- W3124937987 countsByYear W31249379872022 @default.
- W3124937987 countsByYear W31249379872023 @default.
- W3124937987 crossrefType "journal-article" @default.
- W3124937987 hasAuthorship W3124937987A5023494901 @default.
- W3124937987 hasAuthorship W3124937987A5037788039 @default.
- W3124937987 hasAuthorship W3124937987A5040012120 @default.
- W3124937987 hasBestOaLocation W31249379871 @default.
- W3124937987 hasConcept C105795698 @default.
- W3124937987 hasConcept C120665830 @default.
- W3124937987 hasConcept C121332964 @default.
- W3124937987 hasConcept C173608175 @default.
- W3124937987 hasConcept C185544564 @default.
- W3124937987 hasConcept C185592680 @default.
- W3124937987 hasConcept C191486275 @default.
- W3124937987 hasConcept C19499675 @default.
- W3124937987 hasConcept C2778119891 @default.
- W3124937987 hasConcept C2779244869 @default.
- W3124937987 hasConcept C2779851693 @default.
- W3124937987 hasConcept C2781335571 @default.
- W3124937987 hasConcept C30475298 @default.
- W3124937987 hasConcept C33923547 @default.
- W3124937987 hasConcept C34146451 @default.
- W3124937987 hasConcept C41008148 @default.
- W3124937987 hasConcept C43617362 @default.
- W3124937987 hasConcept C54516573 @default.
- W3124937987 hasConceptScore W3124937987C105795698 @default.
- W3124937987 hasConceptScore W3124937987C120665830 @default.
- W3124937987 hasConceptScore W3124937987C121332964 @default.
- W3124937987 hasConceptScore W3124937987C173608175 @default.
- W3124937987 hasConceptScore W3124937987C185544564 @default.
- W3124937987 hasConceptScore W3124937987C185592680 @default.
- W3124937987 hasConceptScore W3124937987C191486275 @default.
- W3124937987 hasConceptScore W3124937987C19499675 @default.
- W3124937987 hasConceptScore W3124937987C2778119891 @default.
- W3124937987 hasConceptScore W3124937987C2779244869 @default.
- W3124937987 hasConceptScore W3124937987C2779851693 @default.
- W3124937987 hasConceptScore W3124937987C2781335571 @default.
- W3124937987 hasConceptScore W3124937987C30475298 @default.
- W3124937987 hasConceptScore W3124937987C33923547 @default.
- W3124937987 hasConceptScore W3124937987C34146451 @default.
- W3124937987 hasConceptScore W3124937987C41008148 @default.
- W3124937987 hasConceptScore W3124937987C43617362 @default.
- W3124937987 hasConceptScore W3124937987C54516573 @default.
- W3124937987 hasFunder F4320309603 @default.
- W3124937987 hasIssue "6Part1" @default.
- W3124937987 hasLocation W31249379871 @default.
- W3124937987 hasLocation W31249379872 @default.