Matches in SemOpenAlex for { <https://semopenalex.org/work/W3124987322> ?p ?o ?g. }
- W3124987322 abstract "The recent advancement in imaging technology, together with the hierarchical feature representation capability of deep learning models, has led to the popularization of deep learning models. Thus, research tends towards the use of deep neural networks as against the hand-crafted machine learning algorithms for solving computational problems involving medical images analysis. This limitation has led to the use of features extracted from non-medical data for training models for medical image analysis, considered optimal for practical implementation in clinical setting because medical images contain semantic contents that are different from that of natural images. Therefore, there is need for an alternative to cross-domain feature-learning. Hence, this chapter discusses the possible ways of harnessing domain-specific features which have semantic contents for development of deep learning models." @default.
- W3124987322 created "2021-02-01" @default.
- W3124987322 creator A5030042453 @default.
- W3124987322 creator A5033243707 @default.
- W3124987322 creator A5043398179 @default.
- W3124987322 creator A5088431522 @default.
- W3124987322 date "2021-01-01" @default.
- W3124987322 modified "2023-09-28" @default.
- W3124987322 title "Semantic Medical Image Analysis" @default.
- W3124987322 cites W1570613334 @default.
- W3124987322 cites W1973378735 @default.
- W3124987322 cites W2038037430 @default.
- W3124987322 cites W2094742068 @default.
- W3124987322 cites W2346062110 @default.
- W3124987322 cites W2415642486 @default.
- W3124987322 cites W2581082771 @default.
- W3124987322 cites W2582555581 @default.
- W3124987322 cites W2607941059 @default.
- W3124987322 cites W2608231518 @default.
- W3124987322 cites W2616747498 @default.
- W3124987322 cites W2745075853 @default.
- W3124987322 cites W2768751304 @default.
- W3124987322 cites W2890741060 @default.
- W3124987322 cites W2891101087 @default.
- W3124987322 cites W2901954625 @default.
- W3124987322 cites W2906598409 @default.
- W3124987322 cites W2924911266 @default.
- W3124987322 cites W2958023374 @default.
- W3124987322 cites W2962838801 @default.
- W3124987322 cites W2964309882 @default.
- W3124987322 cites W2989909204 @default.
- W3124987322 cites W3020454825 @default.
- W3124987322 cites W3037538421 @default.
- W3124987322 cites W3044968736 @default.
- W3124987322 cites W3092613928 @default.
- W3124987322 cites W3096712456 @default.
- W3124987322 cites W4211176081 @default.
- W3124987322 cites W601070381 @default.
- W3124987322 doi "https://doi.org/10.4018/978-1-7998-6697-8.ch007" @default.
- W3124987322 hasPublicationYear "2021" @default.
- W3124987322 type Work @default.
- W3124987322 sameAs 3124987322 @default.
- W3124987322 citedByCount "0" @default.
- W3124987322 crossrefType "book-chapter" @default.
- W3124987322 hasAuthorship W3124987322A5030042453 @default.
- W3124987322 hasAuthorship W3124987322A5033243707 @default.
- W3124987322 hasAuthorship W3124987322A5043398179 @default.
- W3124987322 hasAuthorship W3124987322A5088431522 @default.
- W3124987322 hasConcept C108583219 @default.
- W3124987322 hasConcept C115961682 @default.
- W3124987322 hasConcept C119857082 @default.
- W3124987322 hasConcept C134306372 @default.
- W3124987322 hasConcept C138885662 @default.
- W3124987322 hasConcept C153180895 @default.
- W3124987322 hasConcept C154945302 @default.
- W3124987322 hasConcept C17744445 @default.
- W3124987322 hasConcept C199539241 @default.
- W3124987322 hasConcept C2776359362 @default.
- W3124987322 hasConcept C2776401178 @default.
- W3124987322 hasConcept C2984842247 @default.
- W3124987322 hasConcept C31601959 @default.
- W3124987322 hasConcept C33923547 @default.
- W3124987322 hasConcept C36503486 @default.
- W3124987322 hasConcept C41008148 @default.
- W3124987322 hasConcept C41895202 @default.
- W3124987322 hasConcept C59404180 @default.
- W3124987322 hasConcept C94625758 @default.
- W3124987322 hasConceptScore W3124987322C108583219 @default.
- W3124987322 hasConceptScore W3124987322C115961682 @default.
- W3124987322 hasConceptScore W3124987322C119857082 @default.
- W3124987322 hasConceptScore W3124987322C134306372 @default.
- W3124987322 hasConceptScore W3124987322C138885662 @default.
- W3124987322 hasConceptScore W3124987322C153180895 @default.
- W3124987322 hasConceptScore W3124987322C154945302 @default.
- W3124987322 hasConceptScore W3124987322C17744445 @default.
- W3124987322 hasConceptScore W3124987322C199539241 @default.
- W3124987322 hasConceptScore W3124987322C2776359362 @default.
- W3124987322 hasConceptScore W3124987322C2776401178 @default.
- W3124987322 hasConceptScore W3124987322C2984842247 @default.
- W3124987322 hasConceptScore W3124987322C31601959 @default.
- W3124987322 hasConceptScore W3124987322C33923547 @default.
- W3124987322 hasConceptScore W3124987322C36503486 @default.
- W3124987322 hasConceptScore W3124987322C41008148 @default.
- W3124987322 hasConceptScore W3124987322C41895202 @default.
- W3124987322 hasConceptScore W3124987322C59404180 @default.
- W3124987322 hasConceptScore W3124987322C94625758 @default.
- W3124987322 hasLocation W31249873221 @default.
- W3124987322 hasOpenAccess W3124987322 @default.
- W3124987322 hasPrimaryLocation W31249873221 @default.
- W3124987322 hasRelatedWork W10803944 @default.
- W3124987322 hasRelatedWork W10944326 @default.
- W3124987322 hasRelatedWork W11223206 @default.
- W3124987322 hasRelatedWork W12023667 @default.
- W3124987322 hasRelatedWork W2085493 @default.
- W3124987322 hasRelatedWork W4052871 @default.
- W3124987322 hasRelatedWork W7737393 @default.
- W3124987322 hasRelatedWork W9266473 @default.
- W3124987322 hasRelatedWork W10597021 @default.
- W3124987322 hasRelatedWork W9519625 @default.
- W3124987322 isParatext "false" @default.