Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125022948> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3125022948 abstract "A data-driven approach called CaNN (Calibration Neural Network) is proposed to calibrate financial asset price models using an Artificial Neural Network (ANN). Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning framework, based on available financial option prices. The framework consists of two parts: a forward pass in which we train the weights of the ANN off-line, valuing options under many different asset model parameter settings; and a backward pass, in which we evaluate the trained ANN-solver on-line, aiming to find the weights of the neurons in the input layer. The rapid on-line learning of implied volatility by ANNs, in combination with the use of an adapted parallel global optimization method, tackles the computation bottleneck and provides a fast and reliable technique for calibrating model parameters while avoiding, as much as possible, getting stuck in local minima. Numerical experiments confirm that this machine-learning framework can be employed to calibrate parameters of high-dimensional stochastic volatility models efficiently and accurately." @default.
- W3125022948 created "2021-02-01" @default.
- W3125022948 creator A5033819196 @default.
- W3125022948 creator A5035408121 @default.
- W3125022948 creator A5046181858 @default.
- W3125022948 creator A5071534457 @default.
- W3125022948 date "2019-04-01" @default.
- W3125022948 modified "2023-09-27" @default.
- W3125022948 title "A neural network-based framework for financial model calibration" @default.
- W3125022948 hasPublicationYear "2019" @default.
- W3125022948 type Work @default.
- W3125022948 sameAs 3125022948 @default.
- W3125022948 citedByCount "2" @default.
- W3125022948 countsByYear W31250229482020 @default.
- W3125022948 countsByYear W31250229482021 @default.
- W3125022948 crossrefType "posted-content" @default.
- W3125022948 hasAuthorship W3125022948A5033819196 @default.
- W3125022948 hasAuthorship W3125022948A5035408121 @default.
- W3125022948 hasAuthorship W3125022948A5046181858 @default.
- W3125022948 hasAuthorship W3125022948A5071534457 @default.
- W3125022948 hasConcept C10138342 @default.
- W3125022948 hasConcept C105795698 @default.
- W3125022948 hasConcept C11413529 @default.
- W3125022948 hasConcept C119857082 @default.
- W3125022948 hasConcept C134306372 @default.
- W3125022948 hasConcept C149635348 @default.
- W3125022948 hasConcept C153083717 @default.
- W3125022948 hasConcept C154945302 @default.
- W3125022948 hasConcept C162324750 @default.
- W3125022948 hasConcept C165838908 @default.
- W3125022948 hasConcept C186633575 @default.
- W3125022948 hasConcept C199360897 @default.
- W3125022948 hasConcept C2778770139 @default.
- W3125022948 hasConcept C2780513914 @default.
- W3125022948 hasConcept C33923547 @default.
- W3125022948 hasConcept C38652104 @default.
- W3125022948 hasConcept C41008148 @default.
- W3125022948 hasConcept C45374587 @default.
- W3125022948 hasConcept C50644808 @default.
- W3125022948 hasConcept C76178495 @default.
- W3125022948 hasConcept C91602232 @default.
- W3125022948 hasConceptScore W3125022948C10138342 @default.
- W3125022948 hasConceptScore W3125022948C105795698 @default.
- W3125022948 hasConceptScore W3125022948C11413529 @default.
- W3125022948 hasConceptScore W3125022948C119857082 @default.
- W3125022948 hasConceptScore W3125022948C134306372 @default.
- W3125022948 hasConceptScore W3125022948C149635348 @default.
- W3125022948 hasConceptScore W3125022948C153083717 @default.
- W3125022948 hasConceptScore W3125022948C154945302 @default.
- W3125022948 hasConceptScore W3125022948C162324750 @default.
- W3125022948 hasConceptScore W3125022948C165838908 @default.
- W3125022948 hasConceptScore W3125022948C186633575 @default.
- W3125022948 hasConceptScore W3125022948C199360897 @default.
- W3125022948 hasConceptScore W3125022948C2778770139 @default.
- W3125022948 hasConceptScore W3125022948C2780513914 @default.
- W3125022948 hasConceptScore W3125022948C33923547 @default.
- W3125022948 hasConceptScore W3125022948C38652104 @default.
- W3125022948 hasConceptScore W3125022948C41008148 @default.
- W3125022948 hasConceptScore W3125022948C45374587 @default.
- W3125022948 hasConceptScore W3125022948C50644808 @default.
- W3125022948 hasConceptScore W3125022948C76178495 @default.
- W3125022948 hasConceptScore W3125022948C91602232 @default.
- W3125022948 hasLocation W31250229481 @default.
- W3125022948 hasOpenAccess W3125022948 @default.
- W3125022948 hasPrimaryLocation W31250229481 @default.
- W3125022948 hasRelatedWork W1572914293 @default.
- W3125022948 hasRelatedWork W1793927692 @default.
- W3125022948 hasRelatedWork W2074359703 @default.
- W3125022948 hasRelatedWork W2081070936 @default.
- W3125022948 hasRelatedWork W2217835120 @default.
- W3125022948 hasRelatedWork W2279552445 @default.
- W3125022948 hasRelatedWork W2297367780 @default.
- W3125022948 hasRelatedWork W2378259366 @default.
- W3125022948 hasRelatedWork W2509746057 @default.
- W3125022948 hasRelatedWork W2772361650 @default.
- W3125022948 hasRelatedWork W2788419113 @default.
- W3125022948 hasRelatedWork W2789534245 @default.
- W3125022948 hasRelatedWork W2910873108 @default.
- W3125022948 hasRelatedWork W2914579721 @default.
- W3125022948 hasRelatedWork W2947950003 @default.
- W3125022948 hasRelatedWork W3025664560 @default.
- W3125022948 hasRelatedWork W3032935894 @default.
- W3125022948 hasRelatedWork W3160976460 @default.
- W3125022948 hasRelatedWork W1582964342 @default.
- W3125022948 hasRelatedWork W2550138607 @default.
- W3125022948 isParatext "false" @default.
- W3125022948 isRetracted "false" @default.
- W3125022948 magId "3125022948" @default.
- W3125022948 workType "article" @default.