Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125093010> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3125093010 abstract "A celebrated financial application of convex duality theory gives an explicit relation between the following two quantities: (i) The optimal terminal wealth $X^*(T) : = X_{varphi^*}(T)$ of the problem to maximize the expected $U$-utility of the terminal wealth $X_{varphi}(T)$ generated by admissible portfolios $varphi(t), 0 leq t leq T$ in a market with the risky asset price process modeled as a semimartingale; (ii) The optimal scenario $frac{dQ^*}{dP}$ of the dual problem to minimize the expected $V$-value of $frac{dQ}{dP}$ over a family of equivalent local martingale measures $Q$, where $V$ is the convex conjugate function of the concave function $U$. In this paper we consider markets modeled by It^o-L'evy processes. In the first part we use the maximum principle in stochastic control theory to extend the above relation to a emph{dynamic} relation, valid for all $t in [0,T]$. We prove in particular that the optimal adjoint process for the primal problem coincides with the optimal density process, and that the optimal adjoint process for the dual problem coincides with the optimal wealth process, $0 leq t leq T$. In the terminal time case $t=T$ we recover the classical duality connection above. We get moreover an explicit relation between the optimal portfolio $varphi^*$ and the optimal measure $Q^*$. We also obtain that the existence of an optimal scenario is equivalent to the replicability of a related $T$-claim. In the second part we present robust (model uncertainty) versions of the optimization problems in (i) and (ii), and we prove a similar dynamic relation between them. In particular, we show how to get from the solution of one of the problems to the other. We illustrate the results with explicit examples." @default.
- W3125093010 created "2021-02-01" @default.
- W3125093010 creator A5015750071 @default.
- W3125093010 creator A5078265147 @default.
- W3125093010 date "2015-09-01" @default.
- W3125093010 modified "2023-09-27" @default.
- W3125093010 title "Dynamic robust duality in utility maximization" @default.
- W3125093010 hasPublicationYear "2015" @default.
- W3125093010 type Work @default.
- W3125093010 sameAs 3125093010 @default.
- W3125093010 citedByCount "0" @default.
- W3125093010 crossrefType "posted-content" @default.
- W3125093010 hasAuthorship W3125093010A5015750071 @default.
- W3125093010 hasAuthorship W3125093010A5078265147 @default.
- W3125093010 hasConcept C112680207 @default.
- W3125093010 hasConcept C114614502 @default.
- W3125093010 hasConcept C115483411 @default.
- W3125093010 hasConcept C12108790 @default.
- W3125093010 hasConcept C126255220 @default.
- W3125093010 hasConcept C14646407 @default.
- W3125093010 hasConcept C157972887 @default.
- W3125093010 hasConcept C2524010 @default.
- W3125093010 hasConcept C2778023678 @default.
- W3125093010 hasConcept C28826006 @default.
- W3125093010 hasConcept C33923547 @default.
- W3125093010 hasConcept C39943821 @default.
- W3125093010 hasConcept C48406656 @default.
- W3125093010 hasConceptScore W3125093010C112680207 @default.
- W3125093010 hasConceptScore W3125093010C114614502 @default.
- W3125093010 hasConceptScore W3125093010C115483411 @default.
- W3125093010 hasConceptScore W3125093010C12108790 @default.
- W3125093010 hasConceptScore W3125093010C126255220 @default.
- W3125093010 hasConceptScore W3125093010C14646407 @default.
- W3125093010 hasConceptScore W3125093010C157972887 @default.
- W3125093010 hasConceptScore W3125093010C2524010 @default.
- W3125093010 hasConceptScore W3125093010C2778023678 @default.
- W3125093010 hasConceptScore W3125093010C28826006 @default.
- W3125093010 hasConceptScore W3125093010C33923547 @default.
- W3125093010 hasConceptScore W3125093010C39943821 @default.
- W3125093010 hasConceptScore W3125093010C48406656 @default.
- W3125093010 hasLocation W31250930101 @default.
- W3125093010 hasOpenAccess W3125093010 @default.
- W3125093010 hasPrimaryLocation W31250930101 @default.
- W3125093010 hasRelatedWork W1130137714 @default.
- W3125093010 hasRelatedWork W1464084674 @default.
- W3125093010 hasRelatedWork W1986340452 @default.
- W3125093010 hasRelatedWork W1991510170 @default.
- W3125093010 hasRelatedWork W2005804163 @default.
- W3125093010 hasRelatedWork W2050511960 @default.
- W3125093010 hasRelatedWork W2068748263 @default.
- W3125093010 hasRelatedWork W2122205944 @default.
- W3125093010 hasRelatedWork W2172752848 @default.
- W3125093010 hasRelatedWork W2356824956 @default.
- W3125093010 hasRelatedWork W2735304251 @default.
- W3125093010 hasRelatedWork W2949492035 @default.
- W3125093010 hasRelatedWork W2950951561 @default.
- W3125093010 hasRelatedWork W3014249902 @default.
- W3125093010 hasRelatedWork W3092148583 @default.
- W3125093010 hasRelatedWork W3123410300 @default.
- W3125093010 hasRelatedWork W3124053533 @default.
- W3125093010 hasRelatedWork W3189135172 @default.
- W3125093010 hasRelatedWork W824237227 @default.
- W3125093010 hasRelatedWork W849469867 @default.
- W3125093010 isParatext "false" @default.
- W3125093010 isRetracted "false" @default.
- W3125093010 magId "3125093010" @default.
- W3125093010 workType "article" @default.