Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125135962> ?p ?o ?g. }
- W3125135962 endingPage "429" @default.
- W3125135962 startingPage "418" @default.
- W3125135962 abstract "Introduction: Group iterative multiple model estimation (GIMME) has proven to be a reliable data-driven method to arrive at functional connectivity maps that represent associations between brain regions across time in groups and individuals. However, to date, GIMME has not been able to model time-varying task-related effects. This article introduces HRF-GIMME, an extension of GIMME that enables the modeling of the direct and modulatory effects of a task on functional magnetic resonance imaging data collected by using event-related designs. Critically, hemodynamic response function (HRF)-GIMME incorporates person-specific modeling of the HRF to accommodate known variability in onset delay and shape. Methods: After an introduction of the technical aspects of HRF-GIMME, the performance of HRF-GIMME is evaluated via both a simulation study and application to empirical data. The simulation study assesses the sensitivity and specificity of HRF-GIMME by using data simulated from one slow and two rapid event-related designs, and HRF-GIMME is then applied to two empirical data sets from similar designs to evaluate performance in recovering known neural circuitry. Results: HRF-GIMME showed high sensitivity and specificity across all simulated conditions, and it performed well in the recovery of expected relations between convolved task vectors and brain regions in both simulated and empirical data, particularly for the slow event-related design. Conclusion: Results from simulated and empirical data indicate that HRF-GIMME is a powerful new tool for obtaining directed functional connectivity maps of intrinsic and task-related connections that is able to uncover what is common across the sample as well as crucial individual-level path connections and estimates. Group iterative multiple model estimation (GIMME) is a reliable method for creating functional connectivity maps of the connections between brain regions across time, and it is able to detect what is common across the sample and what is shared between subsets of participants, as well as individual-level path estimates. However, historically, GIMME does not model task-related effects. The novel HRF-GIMME algorithm enables the modeling of direct and modulatory task effects through individual-level estimation of the hemodynamic response function (HRF), presenting a powerful new tool for assessing task effects on functional connectivity networks in functional magnetic resonance imaging data." @default.
- W3125135962 created "2021-02-01" @default.
- W3125135962 creator A5000946262 @default.
- W3125135962 creator A5006142227 @default.
- W3125135962 creator A5010490290 @default.
- W3125135962 creator A5021737959 @default.
- W3125135962 creator A5038137479 @default.
- W3125135962 creator A5047868598 @default.
- W3125135962 creator A5049648099 @default.
- W3125135962 creator A5062755644 @default.
- W3125135962 creator A5076214998 @default.
- W3125135962 creator A5088448770 @default.
- W3125135962 date "2021-08-01" @default.
- W3125135962 modified "2023-10-16" @default.
- W3125135962 title "Detecting Task-Dependent Functional Connectivity in Group Iterative Multiple Model Estimation with Person-Specific Hemodynamic Response Functions" @default.
- W3125135962 cites W1687468892 @default.
- W3125135962 cites W1965325756 @default.
- W3125135962 cites W1968758517 @default.
- W3125135962 cites W1981331769 @default.
- W3125135962 cites W1999405675 @default.
- W3125135962 cites W2004026511 @default.
- W3125135962 cites W2016954751 @default.
- W3125135962 cites W2023095826 @default.
- W3125135962 cites W2024322383 @default.
- W3125135962 cites W2029079171 @default.
- W3125135962 cites W2059527915 @default.
- W3125135962 cites W2072522618 @default.
- W3125135962 cites W2082906925 @default.
- W3125135962 cites W2085423000 @default.
- W3125135962 cites W2092062478 @default.
- W3125135962 cites W2098851098 @default.
- W3125135962 cites W2107187638 @default.
- W3125135962 cites W2111902267 @default.
- W3125135962 cites W2117663940 @default.
- W3125135962 cites W2118791853 @default.
- W3125135962 cites W2120129619 @default.
- W3125135962 cites W2122853929 @default.
- W3125135962 cites W2124606882 @default.
- W3125135962 cites W2134491286 @default.
- W3125135962 cites W2136626859 @default.
- W3125135962 cites W2138905229 @default.
- W3125135962 cites W2144351977 @default.
- W3125135962 cites W2151969869 @default.
- W3125135962 cites W2154471387 @default.
- W3125135962 cites W2158308356 @default.
- W3125135962 cites W2531976799 @default.
- W3125135962 cites W2557390385 @default.
- W3125135962 cites W2559788513 @default.
- W3125135962 cites W2611107196 @default.
- W3125135962 cites W2775056555 @default.
- W3125135962 cites W2888097590 @default.
- W3125135962 cites W2888164149 @default.
- W3125135962 cites W3020466402 @default.
- W3125135962 cites W4238283405 @default.
- W3125135962 doi "https://doi.org/10.1089/brain.2020.0864" @default.
- W3125135962 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8388251" @default.
- W3125135962 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33478367" @default.
- W3125135962 hasPublicationYear "2021" @default.
- W3125135962 type Work @default.
- W3125135962 sameAs 3125135962 @default.
- W3125135962 citedByCount "8" @default.
- W3125135962 countsByYear W31251359622021 @default.
- W3125135962 countsByYear W31251359622022 @default.
- W3125135962 countsByYear W31251359622023 @default.
- W3125135962 crossrefType "journal-article" @default.
- W3125135962 hasAuthorship W3125135962A5000946262 @default.
- W3125135962 hasAuthorship W3125135962A5006142227 @default.
- W3125135962 hasAuthorship W3125135962A5010490290 @default.
- W3125135962 hasAuthorship W3125135962A5021737959 @default.
- W3125135962 hasAuthorship W3125135962A5038137479 @default.
- W3125135962 hasAuthorship W3125135962A5047868598 @default.
- W3125135962 hasAuthorship W3125135962A5049648099 @default.
- W3125135962 hasAuthorship W3125135962A5062755644 @default.
- W3125135962 hasAuthorship W3125135962A5076214998 @default.
- W3125135962 hasAuthorship W3125135962A5088448770 @default.
- W3125135962 hasBestOaLocation W31251359622 @default.
- W3125135962 hasConcept C119857082 @default.
- W3125135962 hasConcept C121332964 @default.
- W3125135962 hasConcept C127413603 @default.
- W3125135962 hasConcept C14036430 @default.
- W3125135962 hasConcept C154945302 @default.
- W3125135962 hasConcept C15744967 @default.
- W3125135962 hasConcept C169760540 @default.
- W3125135962 hasConcept C201995342 @default.
- W3125135962 hasConcept C2779226451 @default.
- W3125135962 hasConcept C2779662365 @default.
- W3125135962 hasConcept C2780451532 @default.
- W3125135962 hasConcept C41008148 @default.
- W3125135962 hasConcept C62520636 @default.
- W3125135962 hasConcept C78458016 @default.
- W3125135962 hasConcept C86803240 @default.
- W3125135962 hasConceptScore W3125135962C119857082 @default.
- W3125135962 hasConceptScore W3125135962C121332964 @default.
- W3125135962 hasConceptScore W3125135962C127413603 @default.
- W3125135962 hasConceptScore W3125135962C14036430 @default.
- W3125135962 hasConceptScore W3125135962C154945302 @default.
- W3125135962 hasConceptScore W3125135962C15744967 @default.
- W3125135962 hasConceptScore W3125135962C169760540 @default.