Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125168045> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3125168045 abstract "House price forecasts are important for several parties. For example, (potential) owner-occupiers want to know whether or not it is a good time to buy or sell a home, and decisions of policy makers and commercial parties may depend on house price expectations. In this paper we are not primarily interested in point estimates, but the focus lies on the distribution of the forecasts. House prices depend on other variables, like interest rates, income, wealth, construction costs, number of households and houses, so forecasts of house prices will depend on forecasts of these variables. For that reason we model the relation between these variables, using a time series of monthly price indices in the Netherlands from January 1974 to December 2010. Some explanatory variables are available on a yearly basis, others on a quarterly or monthly basis. We use two different modeling approaches. The first is an error-correction model, in which a distinction is made between the long and the short-term price developments. The long-term price development depends on the levels of the variables, such as the height of the income and the interest rate. This long-term equation defines for each period an equilibrium price. If the actual price is above the equilibrium price, there is talk of overvaluation. In the short-term equation price changes are explained from previous price changes, changes in the explanatory variables and the deviation between the actual price and the equilibrium price in the previous period. In the second approach we use frequency domain techniques to bring all horizons, observation frequencies and variables together. All time series are decomposed into several components, such as long term and short term, using filtering techniques. The filtered components have zero correlation and fully add up to the original series. Spectral analysis techniques can be used to determine the optimal frequency decomposition. All aspects of the time series behavior can be modeled correctly simultaneously due to separate modeling of the various components. Because the correlations between the components are zero, separate models for the various components can be devised. In the end the results from the component models can then be brought together again. Both models are used to estimate the historical time series, and based on these estimates scenarios of house prices and the corresponding explanatory variables are made. The scenario results from both models are compared." @default.
- W3125168045 created "2021-02-01" @default.
- W3125168045 creator A5004907589 @default.
- W3125168045 creator A5086574679 @default.
- W3125168045 date "2011-01-01" @default.
- W3125168045 modified "2023-09-23" @default.
- W3125168045 title "House Price Scenarios" @default.
- W3125168045 hasPublicationYear "2011" @default.
- W3125168045 type Work @default.
- W3125168045 sameAs 3125168045 @default.
- W3125168045 citedByCount "0" @default.
- W3125168045 crossrefType "posted-content" @default.
- W3125168045 hasAuthorship W3125168045A5004907589 @default.
- W3125168045 hasAuthorship W3125168045A5086574679 @default.
- W3125168045 hasConcept C110121322 @default.
- W3125168045 hasConcept C121332964 @default.
- W3125168045 hasConcept C134306372 @default.
- W3125168045 hasConcept C139719470 @default.
- W3125168045 hasConcept C149782125 @default.
- W3125168045 hasConcept C162324750 @default.
- W3125168045 hasConcept C182365436 @default.
- W3125168045 hasConcept C2524010 @default.
- W3125168045 hasConcept C28719098 @default.
- W3125168045 hasConcept C33923547 @default.
- W3125168045 hasConcept C34881761 @default.
- W3125168045 hasConcept C61797465 @default.
- W3125168045 hasConcept C62520636 @default.
- W3125168045 hasConcept C6856009 @default.
- W3125168045 hasConceptScore W3125168045C110121322 @default.
- W3125168045 hasConceptScore W3125168045C121332964 @default.
- W3125168045 hasConceptScore W3125168045C134306372 @default.
- W3125168045 hasConceptScore W3125168045C139719470 @default.
- W3125168045 hasConceptScore W3125168045C149782125 @default.
- W3125168045 hasConceptScore W3125168045C162324750 @default.
- W3125168045 hasConceptScore W3125168045C182365436 @default.
- W3125168045 hasConceptScore W3125168045C2524010 @default.
- W3125168045 hasConceptScore W3125168045C28719098 @default.
- W3125168045 hasConceptScore W3125168045C33923547 @default.
- W3125168045 hasConceptScore W3125168045C34881761 @default.
- W3125168045 hasConceptScore W3125168045C61797465 @default.
- W3125168045 hasConceptScore W3125168045C62520636 @default.
- W3125168045 hasConceptScore W3125168045C6856009 @default.
- W3125168045 hasOpenAccess W3125168045 @default.
- W3125168045 hasRelatedWork W1579419959 @default.
- W3125168045 hasRelatedWork W1614769995 @default.
- W3125168045 hasRelatedWork W1995767644 @default.
- W3125168045 hasRelatedWork W1999000475 @default.
- W3125168045 hasRelatedWork W2147318057 @default.
- W3125168045 hasRelatedWork W2219144827 @default.
- W3125168045 hasRelatedWork W2227247805 @default.
- W3125168045 hasRelatedWork W22343773 @default.
- W3125168045 hasRelatedWork W2266605885 @default.
- W3125168045 hasRelatedWork W2562286508 @default.
- W3125168045 hasRelatedWork W2606929691 @default.
- W3125168045 hasRelatedWork W2889175863 @default.
- W3125168045 hasRelatedWork W2890157499 @default.
- W3125168045 hasRelatedWork W3000838320 @default.
- W3125168045 hasRelatedWork W3123856564 @default.
- W3125168045 hasRelatedWork W3124281727 @default.
- W3125168045 hasRelatedWork W3140701253 @default.
- W3125168045 hasRelatedWork W3164267154 @default.
- W3125168045 hasRelatedWork W354085958 @default.
- W3125168045 hasRelatedWork W652562672 @default.
- W3125168045 isParatext "false" @default.
- W3125168045 isRetracted "false" @default.
- W3125168045 magId "3125168045" @default.
- W3125168045 workType "article" @default.