Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125182956> ?p ?o ?g. }
- W3125182956 endingPage "e22841" @default.
- W3125182956 startingPage "e22841" @default.
- W3125182956 abstract "Background Misdiagnosis, arbitrary charges, annoying queues, and clinic waiting times among others are long-standing phenomena in the medical industry across the world. These factors can contribute to patient anxiety about misdiagnosis by clinicians. However, with the increasing growth in use of big data in biomedical and health care communities, the performance of artificial intelligence (Al) techniques of diagnosis is improving and can help avoid medical practice errors, including under the current circumstance of COVID-19. Objective This study aims to visualize and measure patients’ heterogeneous preferences from various angles of AI diagnosis versus clinicians in the context of the COVID-19 epidemic in China. We also aim to illustrate the different decision-making factors of the latent class of a discrete choice experiment (DCE) and prospects for the application of AI techniques in judgment and management during the pandemic of SARS-CoV-2 and in the future. Methods A DCE approach was the main analysis method applied in this paper. Attributes from different dimensions were hypothesized: diagnostic method, outpatient waiting time, diagnosis time, accuracy, follow-up after diagnosis, and diagnostic expense. After that, a questionnaire is formed. With collected data from the DCE questionnaire, we apply Sawtooth software to construct a generalized multinomial logit (GMNL) model, mixed logit model, and latent class model with the data sets. Moreover, we calculate the variables’ coefficients, standard error, P value, and odds ratio (OR) and form a utility report to present the importance and weighted percentage of attributes. Results A total of 55.8% of the respondents (428 out of 767) opted for AI diagnosis regardless of the description of the clinicians. In the GMNL model, we found that people prefer the 100% accuracy level the most (OR 4.548, 95% CI 4.048-5.110, P<.001). For the latent class model, the most acceptable model consists of 3 latent classes of respondents. The attributes with the most substantial effects and highest percentage weights are the accuracy (39.29% in general) and expense of diagnosis (21.69% in general), especially the preferences for the diagnosis “accuracy” attribute, which is constant across classes. For class 1 and class 3, people prefer the AI + clinicians method (class 1: OR 1.247, 95% CI 1.036-1.463, P<.001; class 3: OR 1.958, 95% CI 1.769-2.167, P<.001). For class 2, people prefer the AI method (OR 1.546, 95% CI 0.883-2.707, P=.37). The OR of levels of attributes increases with the increase of accuracy across all classes. Conclusions Latent class analysis was prominent and useful in quantifying preferences for attributes of diagnosis choice. People’s preferences for the “accuracy” and “diagnostic expenses” attributes are palpable. AI will have a potential market. However, accuracy and diagnosis expenses need to be taken into consideration." @default.
- W3125182956 created "2021-02-01" @default.
- W3125182956 creator A5002495120 @default.
- W3125182956 creator A5010398165 @default.
- W3125182956 creator A5014010462 @default.
- W3125182956 creator A5028337876 @default.
- W3125182956 creator A5048196632 @default.
- W3125182956 creator A5049277341 @default.
- W3125182956 creator A5065691246 @default.
- W3125182956 creator A5081828308 @default.
- W3125182956 creator A5087289491 @default.
- W3125182956 creator A5089336871 @default.
- W3125182956 date "2021-02-23" @default.
- W3125182956 modified "2023-09-25" @default.
- W3125182956 title "Patients’ Preferences for Artificial Intelligence Applications Versus Clinicians in Disease Diagnosis During the SARS-CoV-2 Pandemic in China: Discrete Choice Experiment" @default.
- W3125182956 cites W1583412610 @default.
- W3125182956 cites W1636312108 @default.
- W3125182956 cites W1899874729 @default.
- W3125182956 cites W1992443460 @default.
- W3125182956 cites W1999711686 @default.
- W3125182956 cites W2004416353 @default.
- W3125182956 cites W2008065712 @default.
- W3125182956 cites W2010529280 @default.
- W3125182956 cites W2019126217 @default.
- W3125182956 cites W2022306341 @default.
- W3125182956 cites W2029807096 @default.
- W3125182956 cites W2038129903 @default.
- W3125182956 cites W2038839282 @default.
- W3125182956 cites W2064552602 @default.
- W3125182956 cites W2106647398 @default.
- W3125182956 cites W2137344397 @default.
- W3125182956 cites W2154651644 @default.
- W3125182956 cites W2407102378 @default.
- W3125182956 cites W2480473412 @default.
- W3125182956 cites W2524372520 @default.
- W3125182956 cites W2744527074 @default.
- W3125182956 cites W2999399991 @default.
- W3125182956 cites W3011149445 @default.
- W3125182956 cites W3025948831 @default.
- W3125182956 cites W3030621456 @default.
- W3125182956 cites W3031396671 @default.
- W3125182956 cites W3035015856 @default.
- W3125182956 cites W30857291 @default.
- W3125182956 cites W4236917116 @default.
- W3125182956 cites W4361772805 @default.
- W3125182956 doi "https://doi.org/10.2196/22841" @default.
- W3125182956 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7903977" @default.
- W3125182956 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33493130" @default.
- W3125182956 hasPublicationYear "2021" @default.
- W3125182956 type Work @default.
- W3125182956 sameAs 3125182956 @default.
- W3125182956 citedByCount "11" @default.
- W3125182956 countsByYear W31251829562021 @default.
- W3125182956 countsByYear W31251829562022 @default.
- W3125182956 countsByYear W31251829562023 @default.
- W3125182956 crossrefType "journal-article" @default.
- W3125182956 hasAuthorship W3125182956A5002495120 @default.
- W3125182956 hasAuthorship W3125182956A5010398165 @default.
- W3125182956 hasAuthorship W3125182956A5014010462 @default.
- W3125182956 hasAuthorship W3125182956A5028337876 @default.
- W3125182956 hasAuthorship W3125182956A5048196632 @default.
- W3125182956 hasAuthorship W3125182956A5049277341 @default.
- W3125182956 hasAuthorship W3125182956A5065691246 @default.
- W3125182956 hasAuthorship W3125182956A5081828308 @default.
- W3125182956 hasAuthorship W3125182956A5087289491 @default.
- W3125182956 hasAuthorship W3125182956A5089336871 @default.
- W3125182956 hasBestOaLocation W31251829561 @default.
- W3125182956 hasConcept C117568660 @default.
- W3125182956 hasConcept C119857082 @default.
- W3125182956 hasConcept C143095724 @default.
- W3125182956 hasConcept C151730666 @default.
- W3125182956 hasConcept C151956035 @default.
- W3125182956 hasConcept C154945302 @default.
- W3125182956 hasConcept C2779343474 @default.
- W3125182956 hasConcept C41008148 @default.
- W3125182956 hasConcept C70727504 @default.
- W3125182956 hasConcept C71924100 @default.
- W3125182956 hasConcept C86803240 @default.
- W3125182956 hasConcept C95057490 @default.
- W3125182956 hasConceptScore W3125182956C117568660 @default.
- W3125182956 hasConceptScore W3125182956C119857082 @default.
- W3125182956 hasConceptScore W3125182956C143095724 @default.
- W3125182956 hasConceptScore W3125182956C151730666 @default.
- W3125182956 hasConceptScore W3125182956C151956035 @default.
- W3125182956 hasConceptScore W3125182956C154945302 @default.
- W3125182956 hasConceptScore W3125182956C2779343474 @default.
- W3125182956 hasConceptScore W3125182956C41008148 @default.
- W3125182956 hasConceptScore W3125182956C70727504 @default.
- W3125182956 hasConceptScore W3125182956C71924100 @default.
- W3125182956 hasConceptScore W3125182956C86803240 @default.
- W3125182956 hasConceptScore W3125182956C95057490 @default.
- W3125182956 hasIssue "2" @default.
- W3125182956 hasLocation W31251829561 @default.
- W3125182956 hasLocation W31251829562 @default.
- W3125182956 hasLocation W31251829563 @default.
- W3125182956 hasLocation W31251829564 @default.
- W3125182956 hasOpenAccess W3125182956 @default.
- W3125182956 hasPrimaryLocation W31251829561 @default.