Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125223709> ?p ?o ?g. }
- W3125223709 endingPage "1349" @default.
- W3125223709 startingPage "1341" @default.
- W3125223709 abstract "We review current methods for building point spread function (PSF)-matching kernels for the purposes of image subtraction or co-addition. Such methods use a linear decomposition of the kernel on a series of basis functions. The correct choice of these basis functions is fundamental to the efficiency and effectiveness of the matching – the chosen bases should represent the underlying signal using a reasonably small number of shapes, and/or have a minimum number of user-adjustable tuning parameters. We examine methods whose bases comprise multiple Gauss–Hermite polynomials, as well as a form-free basis composed of delta-functions. Kernels derived from delta-functions are unsurprisingly shown to be more expressive; they are able to take more general shapes and perform better in situations where sum-of-Gaussian methods are known to fail. However, due to its many degrees of freedom (the maximum number allowed by the kernel size) this basis tends to overfit the problem and yields noisy kernels having large variance. We introduce a new technique to regularize these delta-function kernel solutions, which bridges the gap between the generality of delta-function kernels and the compactness of sum-of-Gaussian kernels. Through this regularization we are able to create general kernel solutions that represent the intrinsic shape of the PSF-matching kernel with only one degree of freedom, the strength of the regularization λ. The role of λ is effectively to exchange variance in the resulting difference image with variance in the kernel itself. We examine considerations in choosing the value of λ, including statistical risk estimators and the ability of the solution to predict solutions for adjacent areas. Both of these suggest moderate strengths of λ between 0.1 and 1.0, although this optimization is likely data set dependent. This model allows for flexible representations of the convolution kernel that have significant predictive ability and will prove useful in implementing robust image subtraction pipelines that must address hundreds to thousands of images per night." @default.
- W3125223709 created "2021-02-01" @default.
- W3125223709 creator A5009538941 @default.
- W3125223709 creator A5011187700 @default.
- W3125223709 creator A5011641015 @default.
- W3125223709 creator A5015693902 @default.
- W3125223709 creator A5051565479 @default.
- W3125223709 creator A5067878769 @default.
- W3125223709 creator A5072420646 @default.
- W3125223709 date "2012-08-08" @default.
- W3125223709 modified "2023-10-16" @default.
- W3125223709 title "Regularization techniques for PSF-matching kernels - I. Choice of kernel basis" @default.
- W3125223709 cites W1747917535 @default.
- W3125223709 cites W1976418936 @default.
- W3125223709 cites W1984875344 @default.
- W3125223709 cites W1986931325 @default.
- W3125223709 cites W2001139042 @default.
- W3125223709 cites W2009625798 @default.
- W3125223709 cites W2020082360 @default.
- W3125223709 cites W2023016496 @default.
- W3125223709 cites W2023502387 @default.
- W3125223709 cites W2028755035 @default.
- W3125223709 cites W2029990369 @default.
- W3125223709 cites W2054640142 @default.
- W3125223709 cites W2057264489 @default.
- W3125223709 cites W2084398295 @default.
- W3125223709 cites W2088217941 @default.
- W3125223709 cites W2100565593 @default.
- W3125223709 cites W2110402261 @default.
- W3125223709 cites W2158940042 @default.
- W3125223709 cites W3099529318 @default.
- W3125223709 cites W3100557281 @default.
- W3125223709 cites W3103353099 @default.
- W3125223709 cites W3104047544 @default.
- W3125223709 cites W3105422362 @default.
- W3125223709 cites W4232450313 @default.
- W3125223709 doi "https://doi.org/10.1111/j.1365-2966.2012.21542.x" @default.
- W3125223709 hasPublicationYear "2012" @default.
- W3125223709 type Work @default.
- W3125223709 sameAs 3125223709 @default.
- W3125223709 citedByCount "16" @default.
- W3125223709 countsByYear W31252237092012 @default.
- W3125223709 countsByYear W31252237092015 @default.
- W3125223709 countsByYear W31252237092016 @default.
- W3125223709 countsByYear W31252237092017 @default.
- W3125223709 countsByYear W31252237092018 @default.
- W3125223709 countsByYear W31252237092020 @default.
- W3125223709 countsByYear W31252237092021 @default.
- W3125223709 countsByYear W31252237092022 @default.
- W3125223709 countsByYear W31252237092023 @default.
- W3125223709 crossrefType "journal-article" @default.
- W3125223709 hasAuthorship W3125223709A5009538941 @default.
- W3125223709 hasAuthorship W3125223709A5011187700 @default.
- W3125223709 hasAuthorship W3125223709A5011641015 @default.
- W3125223709 hasAuthorship W3125223709A5015693902 @default.
- W3125223709 hasAuthorship W3125223709A5051565479 @default.
- W3125223709 hasAuthorship W3125223709A5067878769 @default.
- W3125223709 hasAuthorship W3125223709A5072420646 @default.
- W3125223709 hasBestOaLocation W31252237091 @default.
- W3125223709 hasConcept C11413529 @default.
- W3125223709 hasConcept C121332964 @default.
- W3125223709 hasConcept C122280245 @default.
- W3125223709 hasConcept C12267149 @default.
- W3125223709 hasConcept C12426560 @default.
- W3125223709 hasConcept C134306372 @default.
- W3125223709 hasConcept C154945302 @default.
- W3125223709 hasConcept C163716315 @default.
- W3125223709 hasConcept C195699287 @default.
- W3125223709 hasConcept C202444582 @default.
- W3125223709 hasConcept C22019652 @default.
- W3125223709 hasConcept C2524010 @default.
- W3125223709 hasConcept C2776135515 @default.
- W3125223709 hasConcept C28826006 @default.
- W3125223709 hasConcept C33923547 @default.
- W3125223709 hasConcept C41008148 @default.
- W3125223709 hasConcept C50644808 @default.
- W3125223709 hasConcept C5917680 @default.
- W3125223709 hasConcept C62520636 @default.
- W3125223709 hasConcept C7218915 @default.
- W3125223709 hasConcept C74193536 @default.
- W3125223709 hasConceptScore W3125223709C11413529 @default.
- W3125223709 hasConceptScore W3125223709C121332964 @default.
- W3125223709 hasConceptScore W3125223709C122280245 @default.
- W3125223709 hasConceptScore W3125223709C12267149 @default.
- W3125223709 hasConceptScore W3125223709C12426560 @default.
- W3125223709 hasConceptScore W3125223709C134306372 @default.
- W3125223709 hasConceptScore W3125223709C154945302 @default.
- W3125223709 hasConceptScore W3125223709C163716315 @default.
- W3125223709 hasConceptScore W3125223709C195699287 @default.
- W3125223709 hasConceptScore W3125223709C202444582 @default.
- W3125223709 hasConceptScore W3125223709C22019652 @default.
- W3125223709 hasConceptScore W3125223709C2524010 @default.
- W3125223709 hasConceptScore W3125223709C2776135515 @default.
- W3125223709 hasConceptScore W3125223709C28826006 @default.
- W3125223709 hasConceptScore W3125223709C33923547 @default.
- W3125223709 hasConceptScore W3125223709C41008148 @default.
- W3125223709 hasConceptScore W3125223709C50644808 @default.
- W3125223709 hasConceptScore W3125223709C5917680 @default.