Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125246576> ?p ?o ?g. }
- W3125246576 endingPage "342" @default.
- W3125246576 startingPage "342" @default.
- W3125246576 abstract "Fuel type is one of the key factors for analyzing the potential of fire ignition and propagation in agricultural and forest environments. The increase of three-dimensional datasets provided by active sensors, such as LiDAR (Light Detection and Ranging), has improved the classification of fuel types through empirical modelling. Empirical methods are site and sensor specific while Radiative Transfer Models (RTM) approaches provide broader universality. The aim of this work is to analyze the suitability of Discrete Anisotropic Radiative Transfer (DART) model to replicate low density small-footprint Airborne Laser Scanning (ALS) measurements and subsequent fuel type classification. Field data measured in 104 plots are used as ground truth to simulate LiDAR response based on the sensor and flight characteristics of low-density ALS data captured by the Spanish National Plan for Aerial Orthophotography (PNOA) in two different dates (2011 and 2016). The accuracy assessment of the DART simulations is performed using Spearman rank correlation coefficients between the simulated metrics and the ALS-PNOA ones. The results show that 32% of the computed metrics overpassed a correlation value of 0.80 between simulated and ALS-PNOA metrics in 2011 and 28% in 2016. The highest correlations were related to high height percentiles, canopy variability metrics as for example standard deviation and Rumple diversity index, reaching correlation values over 0.94. Two metric selection approaches and Support Vector Machine classification method with variants were compared to classify fuel types. The best-fitted classification model, trained with the DART simulated sample and validated with ALS-PNOA data, was obtained using Support Vector Machine method with radial kernel. The overall accuracy of the classification after validation was 88% and 91% for the 2011 and 2016 years, respectively. The use of DART demonstrates its value for simulating generalizable 3D data for fuel type classification providing relevant information for forest managers in fire prevention and extinction." @default.
- W3125246576 created "2021-02-01" @default.
- W3125246576 creator A5009560173 @default.
- W3125246576 creator A5035505929 @default.
- W3125246576 creator A5066572765 @default.
- W3125246576 creator A5071141549 @default.
- W3125246576 creator A5087226329 @default.
- W3125246576 creator A5089665254 @default.
- W3125246576 creator A5091587845 @default.
- W3125246576 date "2021-01-20" @default.
- W3125246576 modified "2023-10-14" @default.
- W3125246576 title "Assessing the Potential of the DART Model to Discrete Return LiDAR Simulation—Application to Fuel Type Mapping" @default.
- W3125246576 cites W1604274158 @default.
- W3125246576 cites W1928471770 @default.
- W3125246576 cites W1968558695 @default.
- W3125246576 cites W1970011146 @default.
- W3125246576 cites W1971563914 @default.
- W3125246576 cites W1977030628 @default.
- W3125246576 cites W1985629884 @default.
- W3125246576 cites W1994985780 @default.
- W3125246576 cites W2001618165 @default.
- W3125246576 cites W2002041313 @default.
- W3125246576 cites W2030066785 @default.
- W3125246576 cites W2063907334 @default.
- W3125246576 cites W2065577834 @default.
- W3125246576 cites W2070510131 @default.
- W3125246576 cites W2075704050 @default.
- W3125246576 cites W2082602113 @default.
- W3125246576 cites W2104998606 @default.
- W3125246576 cites W2107349386 @default.
- W3125246576 cites W2108850015 @default.
- W3125246576 cites W2133353144 @default.
- W3125246576 cites W2143533662 @default.
- W3125246576 cites W2152231181 @default.
- W3125246576 cites W2154607623 @default.
- W3125246576 cites W2166043246 @default.
- W3125246576 cites W2180489030 @default.
- W3125246576 cites W2273297058 @default.
- W3125246576 cites W2342407737 @default.
- W3125246576 cites W2475593558 @default.
- W3125246576 cites W2501986955 @default.
- W3125246576 cites W2507973586 @default.
- W3125246576 cites W2538404941 @default.
- W3125246576 cites W2539178146 @default.
- W3125246576 cites W2611361253 @default.
- W3125246576 cites W269669389 @default.
- W3125246576 cites W2889911412 @default.
- W3125246576 cites W2913372974 @default.
- W3125246576 cites W2916979987 @default.
- W3125246576 cites W2927080174 @default.
- W3125246576 cites W2998972563 @default.
- W3125246576 cites W3010716106 @default.
- W3125246576 cites W3028928772 @default.
- W3125246576 cites W3103829725 @default.
- W3125246576 doi "https://doi.org/10.3390/rs13030342" @default.
- W3125246576 hasPublicationYear "2021" @default.
- W3125246576 type Work @default.
- W3125246576 sameAs 3125246576 @default.
- W3125246576 citedByCount "7" @default.
- W3125246576 countsByYear W31252465762022 @default.
- W3125246576 countsByYear W31252465762023 @default.
- W3125246576 crossrefType "journal-article" @default.
- W3125246576 hasAuthorship W3125246576A5009560173 @default.
- W3125246576 hasAuthorship W3125246576A5035505929 @default.
- W3125246576 hasAuthorship W3125246576A5066572765 @default.
- W3125246576 hasAuthorship W3125246576A5071141549 @default.
- W3125246576 hasAuthorship W3125246576A5087226329 @default.
- W3125246576 hasAuthorship W3125246576A5089665254 @default.
- W3125246576 hasAuthorship W3125246576A5091587845 @default.
- W3125246576 hasBestOaLocation W31252465761 @default.
- W3125246576 hasConcept C115051666 @default.
- W3125246576 hasConcept C132943942 @default.
- W3125246576 hasConcept C154945302 @default.
- W3125246576 hasConcept C166957645 @default.
- W3125246576 hasConcept C169258074 @default.
- W3125246576 hasConcept C199360897 @default.
- W3125246576 hasConcept C205649164 @default.
- W3125246576 hasConcept C2779417484 @default.
- W3125246576 hasConcept C39432304 @default.
- W3125246576 hasConcept C41008148 @default.
- W3125246576 hasConcept C51399673 @default.
- W3125246576 hasConcept C62649853 @default.
- W3125246576 hasConcept C76155785 @default.
- W3125246576 hasConceptScore W3125246576C115051666 @default.
- W3125246576 hasConceptScore W3125246576C132943942 @default.
- W3125246576 hasConceptScore W3125246576C154945302 @default.
- W3125246576 hasConceptScore W3125246576C166957645 @default.
- W3125246576 hasConceptScore W3125246576C169258074 @default.
- W3125246576 hasConceptScore W3125246576C199360897 @default.
- W3125246576 hasConceptScore W3125246576C205649164 @default.
- W3125246576 hasConceptScore W3125246576C2779417484 @default.
- W3125246576 hasConceptScore W3125246576C39432304 @default.
- W3125246576 hasConceptScore W3125246576C41008148 @default.
- W3125246576 hasConceptScore W3125246576C51399673 @default.
- W3125246576 hasConceptScore W3125246576C62649853 @default.
- W3125246576 hasConceptScore W3125246576C76155785 @default.
- W3125246576 hasFunder F4320324111 @default.
- W3125246576 hasIssue "3" @default.