Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125280763> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W3125280763 abstract "Riemann’s method is one of the definitive ways of solving Cauchy’s problem for a second order linear hyperbolic partial differential equation in two variables. The first review of Riemann’s method was published by E. T. Copson in 1958. This study extends that work. Firstly, three solution methods were overlooked in Copson’s original paper. Secondly, several new approaches for finding Riemann functions have been developed since 1958. Those techniques are included here and placed in the context of Copson’s original study. There are also numerous equivalences between Riemann functions that have not previously been identified in the literature. Those links are clarified here by showing that many known Riemann functions are often equivalent due to the governing equation admitting a symmetry algebra isomorphic to $SL(2,R)$. Alternatively, the equation admits a Lie-Bäcklund symmetry algebra. Combining the results from several methods, a new class of Riemann functions is then derived which admits no symmetries whatsoever." @default.
- W3125280763 created "2021-02-01" @default.
- W3125280763 creator A5027655042 @default.
- W3125280763 date "2018-10-30" @default.
- W3125280763 modified "2023-09-26" @default.
- W3125280763 title "On The Riemann Function" @default.
- W3125280763 doi "https://doi.org/10.20944/preprints201810.0717.v1" @default.
- W3125280763 hasPublicationYear "2018" @default.
- W3125280763 type Work @default.
- W3125280763 sameAs 3125280763 @default.
- W3125280763 citedByCount "1" @default.
- W3125280763 countsByYear W31252807632021 @default.
- W3125280763 crossrefType "posted-content" @default.
- W3125280763 hasAuthorship W3125280763A5027655042 @default.
- W3125280763 hasBestOaLocation W31252807631 @default.
- W3125280763 hasConcept C136119220 @default.
- W3125280763 hasConcept C166957645 @default.
- W3125280763 hasConcept C199479865 @default.
- W3125280763 hasConcept C202444582 @default.
- W3125280763 hasConcept C205649164 @default.
- W3125280763 hasConcept C2524010 @default.
- W3125280763 hasConcept C2779343474 @default.
- W3125280763 hasConcept C33923547 @default.
- W3125280763 hasConcept C96469262 @default.
- W3125280763 hasConceptScore W3125280763C136119220 @default.
- W3125280763 hasConceptScore W3125280763C166957645 @default.
- W3125280763 hasConceptScore W3125280763C199479865 @default.
- W3125280763 hasConceptScore W3125280763C202444582 @default.
- W3125280763 hasConceptScore W3125280763C205649164 @default.
- W3125280763 hasConceptScore W3125280763C2524010 @default.
- W3125280763 hasConceptScore W3125280763C2779343474 @default.
- W3125280763 hasConceptScore W3125280763C33923547 @default.
- W3125280763 hasConceptScore W3125280763C96469262 @default.
- W3125280763 hasLocation W31252807631 @default.
- W3125280763 hasLocation W31252807632 @default.
- W3125280763 hasOpenAccess W3125280763 @default.
- W3125280763 hasPrimaryLocation W31252807631 @default.
- W3125280763 hasRelatedWork W2023695408 @default.
- W3125280763 hasRelatedWork W2058882201 @default.
- W3125280763 hasRelatedWork W2060157114 @default.
- W3125280763 hasRelatedWork W2074379488 @default.
- W3125280763 hasRelatedWork W2097994234 @default.
- W3125280763 hasRelatedWork W24494385 @default.
- W3125280763 hasRelatedWork W2789451785 @default.
- W3125280763 hasRelatedWork W2899399342 @default.
- W3125280763 hasRelatedWork W3125280763 @default.
- W3125280763 hasRelatedWork W883985346 @default.
- W3125280763 isParatext "false" @default.
- W3125280763 isRetracted "false" @default.
- W3125280763 magId "3125280763" @default.
- W3125280763 workType "article" @default.