Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125292062> ?p ?o ?g. }
- W3125292062 endingPage "272" @default.
- W3125292062 startingPage "245" @default.
- W3125292062 abstract "In this paper, we show how to estimate the asymptotic (conditional) covariance matrix, which appears in central limit theorems in high-frequency estimation of asset return volatility. We provide a recipe for the estimation of this matrix by subsampling; an approach that computes rescaled copies of the original statistic based on local stretches of high-frequency data, and then it studies the sampling variation of these. We show that our estimator is consistent both in frictionless markets and models with additive microstructure noise. We derive a rate of convergence for it and are also able to determine an optimal rate for its tuning parameters (e.g., the number of subsamples). Subsampling does not require an extra set of estimators to do inference, which renders it trivial to implement. As a variance–covariance matrix estimator, it has the attractive feature that it is positive semi-definite by construction. Moreover, the subsampler is to some extent automatic, as it does not exploit explicit knowledge about the structure of the asymptotic covariance. It therefore tends to adapt to the problem at hand and be robust against misspecification of the noise process. As such, this paper facilitates assessment of the sampling errors inherent in high-frequency estimation of volatility. We highlight the finite sample properties of the subsampler in a Monte Carlo study, while some initial empirical work demonstrates its use to draw feasible inference about volatility in financial markets." @default.
- W3125292062 created "2021-02-01" @default.
- W3125292062 creator A5008840813 @default.
- W3125292062 creator A5022093434 @default.
- W3125292062 creator A5061167387 @default.
- W3125292062 creator A5085810339 @default.
- W3125292062 date "2017-04-01" @default.
- W3125292062 modified "2023-10-16" @default.
- W3125292062 title "Inference from high-frequency data: A subsampling approach" @default.
- W3125292062 cites W1965635191 @default.
- W3125292062 cites W1969269132 @default.
- W3125292062 cites W1970549508 @default.
- W3125292062 cites W1976657063 @default.
- W3125292062 cites W1977289659 @default.
- W3125292062 cites W2003413166 @default.
- W3125292062 cites W2018240140 @default.
- W3125292062 cites W2031855349 @default.
- W3125292062 cites W2035416181 @default.
- W3125292062 cites W2057603376 @default.
- W3125292062 cites W2063887941 @default.
- W3125292062 cites W2064978316 @default.
- W3125292062 cites W2068138154 @default.
- W3125292062 cites W2077791698 @default.
- W3125292062 cites W2085758431 @default.
- W3125292062 cites W2090942229 @default.
- W3125292062 cites W2104486676 @default.
- W3125292062 cites W2113883339 @default.
- W3125292062 cites W2122643824 @default.
- W3125292062 cites W2123761332 @default.
- W3125292062 cites W2125472587 @default.
- W3125292062 cites W2128569377 @default.
- W3125292062 cites W2132387872 @default.
- W3125292062 cites W2132696906 @default.
- W3125292062 cites W2135439816 @default.
- W3125292062 cites W2140585983 @default.
- W3125292062 cites W2147013701 @default.
- W3125292062 cites W2150690316 @default.
- W3125292062 cites W2158120228 @default.
- W3125292062 cites W2167162925 @default.
- W3125292062 cites W2233142211 @default.
- W3125292062 cites W2299184263 @default.
- W3125292062 cites W3023292412 @default.
- W3125292062 cites W3095114851 @default.
- W3125292062 cites W3121487129 @default.
- W3125292062 cites W3121532596 @default.
- W3125292062 cites W3121650337 @default.
- W3125292062 cites W3122154929 @default.
- W3125292062 cites W3122281927 @default.
- W3125292062 cites W3122669972 @default.
- W3125292062 cites W3122797432 @default.
- W3125292062 cites W3123224097 @default.
- W3125292062 cites W3123668291 @default.
- W3125292062 cites W3123985237 @default.
- W3125292062 cites W3124218550 @default.
- W3125292062 cites W3124336248 @default.
- W3125292062 cites W3125722875 @default.
- W3125292062 cites W3126064560 @default.
- W3125292062 cites W4235855694 @default.
- W3125292062 cites W4243851629 @default.
- W3125292062 cites W4244967830 @default.
- W3125292062 cites W4255461888 @default.
- W3125292062 doi "https://doi.org/10.1016/j.jeconom.2016.07.010" @default.
- W3125292062 hasPublicationYear "2017" @default.
- W3125292062 type Work @default.
- W3125292062 sameAs 3125292062 @default.
- W3125292062 citedByCount "18" @default.
- W3125292062 countsByYear W31252920622017 @default.
- W3125292062 countsByYear W31252920622018 @default.
- W3125292062 countsByYear W31252920622019 @default.
- W3125292062 countsByYear W31252920622020 @default.
- W3125292062 countsByYear W31252920622021 @default.
- W3125292062 countsByYear W31252920622022 @default.
- W3125292062 countsByYear W31252920622023 @default.
- W3125292062 crossrefType "journal-article" @default.
- W3125292062 hasAuthorship W3125292062A5008840813 @default.
- W3125292062 hasAuthorship W3125292062A5022093434 @default.
- W3125292062 hasAuthorship W3125292062A5061167387 @default.
- W3125292062 hasAuthorship W3125292062A5085810339 @default.
- W3125292062 hasBestOaLocation W31252920622 @default.
- W3125292062 hasConcept C105795698 @default.
- W3125292062 hasConcept C127162648 @default.
- W3125292062 hasConcept C149782125 @default.
- W3125292062 hasConcept C154945302 @default.
- W3125292062 hasConcept C166785042 @default.
- W3125292062 hasConcept C178650346 @default.
- W3125292062 hasConcept C185142706 @default.
- W3125292062 hasConcept C185429906 @default.
- W3125292062 hasConcept C19499675 @default.
- W3125292062 hasConcept C2776214188 @default.
- W3125292062 hasConcept C31258907 @default.
- W3125292062 hasConcept C33923547 @default.
- W3125292062 hasConcept C41008148 @default.
- W3125292062 hasConcept C57869625 @default.
- W3125292062 hasConcept C91602232 @default.
- W3125292062 hasConceptScore W3125292062C105795698 @default.
- W3125292062 hasConceptScore W3125292062C127162648 @default.
- W3125292062 hasConceptScore W3125292062C149782125 @default.
- W3125292062 hasConceptScore W3125292062C154945302 @default.