Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125304042> ?p ?o ?g. }
- W3125304042 abstract "The electron scattering process has been investigated by analyzing the interference structure in the photoelectron momentum distribution (PMD) of a hydrogen atom exposed to a single-cycle linearly polarized near-infrared laser field, based on the numerical solution of the full-dimensional time-dependent Schrodinger equation and the Coulomb correlative classical trajectory simulation. The interference pattern in the PMD is closely related to the form of the ultrashort pulse which is dominated by the carrier-envelope phase. A fish-bone-like pattern appears in the PMD using the sine electric field and a spider-like pattern appears using the cosine electric field. These interference structures reflect the scattering process. It is found that the stripe density of the spider-like pattern is mainly dominated by the recollision time of scattering electron trajectories, i.e., the longer the recollision time, the greater the stripe density. Therefore, the photoelectron interference pattern can be used to understand the ionization and scattering processes, and identify these processes on the attosecond time scale." @default.
- W3125304042 created "2021-02-01" @default.
- W3125304042 creator A5007962222 @default.
- W3125304042 creator A5059726938 @default.
- W3125304042 creator A5075864708 @default.
- W3125304042 date "2021-01-15" @default.
- W3125304042 modified "2023-10-17" @default.
- W3125304042 title "Exploring recollision of ultrafast electrons from photoelectron momentum distributions using single-cycle near-infrared laser pulses" @default.
- W3125304042 cites W1979167829 @default.
- W3125304042 cites W1991101760 @default.
- W3125304042 cites W1992609659 @default.
- W3125304042 cites W1993626943 @default.
- W3125304042 cites W1995283816 @default.
- W3125304042 cites W1996511497 @default.
- W3125304042 cites W2002197115 @default.
- W3125304042 cites W2010411843 @default.
- W3125304042 cites W2024125608 @default.
- W3125304042 cites W2035188058 @default.
- W3125304042 cites W2047507598 @default.
- W3125304042 cites W2049831291 @default.
- W3125304042 cites W2061382044 @default.
- W3125304042 cites W2074109153 @default.
- W3125304042 cites W2088351827 @default.
- W3125304042 cites W2090385220 @default.
- W3125304042 cites W2110059910 @default.
- W3125304042 cites W2119546216 @default.
- W3125304042 cites W2125410420 @default.
- W3125304042 cites W2129312440 @default.
- W3125304042 cites W2325359095 @default.
- W3125304042 cites W2328074443 @default.
- W3125304042 cites W2329796388 @default.
- W3125304042 cites W2329858046 @default.
- W3125304042 cites W2334072668 @default.
- W3125304042 cites W2338640973 @default.
- W3125304042 cites W2339681962 @default.
- W3125304042 cites W2625494677 @default.
- W3125304042 cites W2626934686 @default.
- W3125304042 cites W2767730474 @default.
- W3125304042 cites W2814558065 @default.
- W3125304042 cites W2894791733 @default.
- W3125304042 cites W2909703684 @default.
- W3125304042 cites W2946273498 @default.
- W3125304042 cites W2947764399 @default.
- W3125304042 cites W3000439835 @default.
- W3125304042 cites W3009533812 @default.
- W3125304042 cites W3032622554 @default.
- W3125304042 cites W3102101297 @default.
- W3125304042 cites W4211101250 @default.
- W3125304042 cites W4235084753 @default.
- W3125304042 doi "https://doi.org/10.1103/physreva.103.013108" @default.
- W3125304042 hasPublicationYear "2021" @default.
- W3125304042 type Work @default.
- W3125304042 sameAs 3125304042 @default.
- W3125304042 citedByCount "6" @default.
- W3125304042 countsByYear W31253040422021 @default.
- W3125304042 countsByYear W31253040422022 @default.
- W3125304042 crossrefType "journal-article" @default.
- W3125304042 hasAuthorship W3125304042A5007962222 @default.
- W3125304042 hasAuthorship W3125304042A5059726938 @default.
- W3125304042 hasAuthorship W3125304042A5075864708 @default.
- W3125304042 hasConcept C10138342 @default.
- W3125304042 hasConcept C119599485 @default.
- W3125304042 hasConcept C120665830 @default.
- W3125304042 hasConcept C121332964 @default.
- W3125304042 hasConcept C127162648 @default.
- W3125304042 hasConcept C127413603 @default.
- W3125304042 hasConcept C143357915 @default.
- W3125304042 hasConcept C147120987 @default.
- W3125304042 hasConcept C162324750 @default.
- W3125304042 hasConcept C178596936 @default.
- W3125304042 hasConcept C184779094 @default.
- W3125304042 hasConcept C191486275 @default.
- W3125304042 hasConcept C2778259960 @default.
- W3125304042 hasConcept C32022120 @default.
- W3125304042 hasConcept C520434653 @default.
- W3125304042 hasConcept C60718061 @default.
- W3125304042 hasConcept C60799052 @default.
- W3125304042 hasConcept C62520636 @default.
- W3125304042 hasConceptScore W3125304042C10138342 @default.
- W3125304042 hasConceptScore W3125304042C119599485 @default.
- W3125304042 hasConceptScore W3125304042C120665830 @default.
- W3125304042 hasConceptScore W3125304042C121332964 @default.
- W3125304042 hasConceptScore W3125304042C127162648 @default.
- W3125304042 hasConceptScore W3125304042C127413603 @default.
- W3125304042 hasConceptScore W3125304042C143357915 @default.
- W3125304042 hasConceptScore W3125304042C147120987 @default.
- W3125304042 hasConceptScore W3125304042C162324750 @default.
- W3125304042 hasConceptScore W3125304042C178596936 @default.
- W3125304042 hasConceptScore W3125304042C184779094 @default.
- W3125304042 hasConceptScore W3125304042C191486275 @default.
- W3125304042 hasConceptScore W3125304042C2778259960 @default.
- W3125304042 hasConceptScore W3125304042C32022120 @default.
- W3125304042 hasConceptScore W3125304042C520434653 @default.
- W3125304042 hasConceptScore W3125304042C60718061 @default.
- W3125304042 hasConceptScore W3125304042C60799052 @default.
- W3125304042 hasConceptScore W3125304042C62520636 @default.
- W3125304042 hasFunder F4320321001 @default.
- W3125304042 hasFunder F4320327721 @default.
- W3125304042 hasFunder F4320335777 @default.
- W3125304042 hasIssue "1" @default.