Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125335782> ?p ?o ?g. }
- W3125335782 endingPage "168" @default.
- W3125335782 startingPage "159" @default.
- W3125335782 abstract "Abstract Ionic Liquids (ILs) are increasingly emerging as new innovating green solvents with great importance from academic, industrial, and environmental perspectives. This surge of interest in considering ILs in various applications is owed to their attractive properties. Involvements in the gas sweetening and the reduction of the amounts of sour and acid gasses are among the most promising applications of ILs. In this study, new advanced committee machine intelligent systems (CMIS) were introduced for predicting the solubility of hydrogen sulfide (H2S) in various ILs. The implemented CMIS models were gained by linking robust data-driven techniques, namely multilayer perceptron (MLP) and cascaded forward neural network (CFNN) beneath rigorous schemes using group method of data handling (GMDH) and genetic programming (GP). The proposed paradigms were developed using an extensive database encompassing 1243 measurements of H2S solubility in 33 ILs. The performed comprehensive error investigation revealed that the newly implemented paradigms yielded very satisfactory prediction performance. Besides, it was found that CMIS-GP provided more accurate estimations of H2S solubility in ILs compared with both the other intelligent models and the best-prior paradigms. In this regard, the developed CMIS-GP exhibited overall average absolute relative deviation (AARD) and coefficient of determination (R2) values of 2.3767% and 0.9990, respectively. Lastly, the trend analyses demonstrated that the tendencies of CMIS-GP predictions were in excellent accordance with the real variations of H2S solubility in ILs with respect to pressure and temperature." @default.
- W3125335782 created "2021-02-01" @default.
- W3125335782 creator A5000065373 @default.
- W3125335782 creator A5045292950 @default.
- W3125335782 creator A5051229554 @default.
- W3125335782 date "2021-01-01" @default.
- W3125335782 modified "2023-10-13" @default.
- W3125335782 title "On the evaluation of solubility of hydrogen sulfide in ionic liquids using advanced committee machine intelligent systems" @default.
- W3125335782 cites W1968867474 @default.
- W3125335782 cites W1976553449 @default.
- W3125335782 cites W1981766191 @default.
- W3125335782 cites W1985600426 @default.
- W3125335782 cites W1987184679 @default.
- W3125335782 cites W1995258983 @default.
- W3125335782 cites W1997726752 @default.
- W3125335782 cites W2001227520 @default.
- W3125335782 cites W2002539479 @default.
- W3125335782 cites W2003176160 @default.
- W3125335782 cites W2004415609 @default.
- W3125335782 cites W2007542173 @default.
- W3125335782 cites W2012991064 @default.
- W3125335782 cites W2015624944 @default.
- W3125335782 cites W2021860166 @default.
- W3125335782 cites W2025797714 @default.
- W3125335782 cites W2029998788 @default.
- W3125335782 cites W2030986885 @default.
- W3125335782 cites W2048439372 @default.
- W3125335782 cites W2052536448 @default.
- W3125335782 cites W2057564827 @default.
- W3125335782 cites W2059927105 @default.
- W3125335782 cites W2060324796 @default.
- W3125335782 cites W2061427898 @default.
- W3125335782 cites W2071470582 @default.
- W3125335782 cites W2081770975 @default.
- W3125335782 cites W2084446153 @default.
- W3125335782 cites W2089326469 @default.
- W3125335782 cites W2102733140 @default.
- W3125335782 cites W2115957753 @default.
- W3125335782 cites W2122099868 @default.
- W3125335782 cites W2140216421 @default.
- W3125335782 cites W2140291508 @default.
- W3125335782 cites W2150913357 @default.
- W3125335782 cites W2164527706 @default.
- W3125335782 cites W2172267870 @default.
- W3125335782 cites W2256322079 @default.
- W3125335782 cites W2276402412 @default.
- W3125335782 cites W2278230979 @default.
- W3125335782 cites W2313518313 @default.
- W3125335782 cites W2317882422 @default.
- W3125335782 cites W2319777796 @default.
- W3125335782 cites W2319872723 @default.
- W3125335782 cites W2335640250 @default.
- W3125335782 cites W2403782785 @default.
- W3125335782 cites W2505597448 @default.
- W3125335782 cites W2525690868 @default.
- W3125335782 cites W2549618110 @default.
- W3125335782 cites W2553708505 @default.
- W3125335782 cites W2560023515 @default.
- W3125335782 cites W2581183650 @default.
- W3125335782 cites W2592123306 @default.
- W3125335782 cites W2593818290 @default.
- W3125335782 cites W2614767395 @default.
- W3125335782 cites W2737031057 @default.
- W3125335782 cites W2743161031 @default.
- W3125335782 cites W2751726229 @default.
- W3125335782 cites W2752477954 @default.
- W3125335782 cites W2781901115 @default.
- W3125335782 cites W2810299670 @default.
- W3125335782 cites W2891094646 @default.
- W3125335782 cites W2891464443 @default.
- W3125335782 cites W2896348830 @default.
- W3125335782 cites W2903923564 @default.
- W3125335782 cites W2904179334 @default.
- W3125335782 cites W2916615466 @default.
- W3125335782 cites W2947334297 @default.
- W3125335782 cites W2963675013 @default.
- W3125335782 cites W2964038321 @default.
- W3125335782 cites W2969686885 @default.
- W3125335782 cites W2993208053 @default.
- W3125335782 cites W3003580673 @default.
- W3125335782 cites W3007313418 @default.
- W3125335782 cites W3007658887 @default.
- W3125335782 cites W3012005648 @default.
- W3125335782 cites W3035561222 @default.
- W3125335782 cites W3045132968 @default.
- W3125335782 cites W3047710797 @default.
- W3125335782 cites W3063804164 @default.
- W3125335782 cites W3091912075 @default.
- W3125335782 cites W3092400355 @default.
- W3125335782 cites W3109192280 @default.
- W3125335782 doi "https://doi.org/10.1016/j.jtice.2021.01.007" @default.
- W3125335782 hasPublicationYear "2021" @default.
- W3125335782 type Work @default.
- W3125335782 sameAs 3125335782 @default.
- W3125335782 citedByCount "35" @default.
- W3125335782 countsByYear W31253357822021 @default.
- W3125335782 countsByYear W31253357822022 @default.
- W3125335782 countsByYear W31253357822023 @default.