Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125341787> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3125341787 endingPage "104700" @default.
- W3125341787 startingPage "104700" @default.
- W3125341787 abstract "Abstract This paper studies the advantages and disadvantages of different machine learning techniques in predicting ground-motion intensity measures given source characteristics, source-to-site distance, and local site conditions. Typically, linear regression-based models with predefined equations and coefficients are used in ground motion prediction. However, restrictions of the linear regression models may limit their capabilities in extracting complex nonlinear behaviors in the data. Therefore, the present paper comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. This study quantifies event-to-event and site-to-site variability of the ground motions by implementing them as random effect terms to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4–500 km in Oklahoma, Kansas, and Texas since 2005. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring predefined equations or coefficients. Moreover, it is found that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available." @default.
- W3125341787 created "2021-02-01" @default.
- W3125341787 creator A5070341430 @default.
- W3125341787 creator A5074774776 @default.
- W3125341787 date "2021-03-01" @default.
- W3125341787 modified "2023-10-05" @default.
- W3125341787 title "Machine learning in ground motion prediction" @default.
- W3125341787 cites W1968842194 @default.
- W3125341787 cites W1983191294 @default.
- W3125341787 cites W1993620114 @default.
- W3125341787 cites W1995341919 @default.
- W3125341787 cites W2014994425 @default.
- W3125341787 cites W2040622309 @default.
- W3125341787 cites W2040928062 @default.
- W3125341787 cites W2048454736 @default.
- W3125341787 cites W2070058129 @default.
- W3125341787 cites W2072408811 @default.
- W3125341787 cites W2073636678 @default.
- W3125341787 cites W2079729400 @default.
- W3125341787 cites W2087070363 @default.
- W3125341787 cites W2098904504 @default.
- W3125341787 cites W2103496339 @default.
- W3125341787 cites W2112661518 @default.
- W3125341787 cites W2115985071 @default.
- W3125341787 cites W2134181680 @default.
- W3125341787 cites W2137893774 @default.
- W3125341787 cites W2141754405 @default.
- W3125341787 cites W2145752139 @default.
- W3125341787 cites W2147185485 @default.
- W3125341787 cites W2157264936 @default.
- W3125341787 cites W2180882138 @default.
- W3125341787 cites W2238059368 @default.
- W3125341787 cites W2323482506 @default.
- W3125341787 cites W2346523903 @default.
- W3125341787 cites W2406667669 @default.
- W3125341787 cites W2483530346 @default.
- W3125341787 cites W2555280217 @default.
- W3125341787 cites W2583122919 @default.
- W3125341787 cites W2594395557 @default.
- W3125341787 cites W2597813056 @default.
- W3125341787 cites W2766908073 @default.
- W3125341787 cites W2770617885 @default.
- W3125341787 cites W2792952603 @default.
- W3125341787 cites W2793656184 @default.
- W3125341787 cites W2893403768 @default.
- W3125341787 cites W2907153224 @default.
- W3125341787 cites W2907292342 @default.
- W3125341787 cites W2911211986 @default.
- W3125341787 cites W2944407712 @default.
- W3125341787 cites W2952005009 @default.
- W3125341787 cites W2963792505 @default.
- W3125341787 cites W2973218737 @default.
- W3125341787 cites W2989782118 @default.
- W3125341787 cites W3161832529 @default.
- W3125341787 doi "https://doi.org/10.1016/j.cageo.2021.104700" @default.
- W3125341787 hasPublicationYear "2021" @default.
- W3125341787 type Work @default.
- W3125341787 sameAs 3125341787 @default.
- W3125341787 citedByCount "28" @default.
- W3125341787 countsByYear W31253417872021 @default.
- W3125341787 countsByYear W31253417872022 @default.
- W3125341787 countsByYear W31253417872023 @default.
- W3125341787 crossrefType "journal-article" @default.
- W3125341787 hasAuthorship W3125341787A5070341430 @default.
- W3125341787 hasAuthorship W3125341787A5074774776 @default.
- W3125341787 hasConcept C104114177 @default.
- W3125341787 hasConcept C119857082 @default.
- W3125341787 hasConcept C127313418 @default.
- W3125341787 hasConcept C154945302 @default.
- W3125341787 hasConcept C31972630 @default.
- W3125341787 hasConcept C41008148 @default.
- W3125341787 hasConceptScore W3125341787C104114177 @default.
- W3125341787 hasConceptScore W3125341787C119857082 @default.
- W3125341787 hasConceptScore W3125341787C127313418 @default.
- W3125341787 hasConceptScore W3125341787C154945302 @default.
- W3125341787 hasConceptScore W3125341787C31972630 @default.
- W3125341787 hasConceptScore W3125341787C41008148 @default.
- W3125341787 hasLocation W31253417871 @default.
- W3125341787 hasOpenAccess W3125341787 @default.
- W3125341787 hasPrimaryLocation W31253417871 @default.
- W3125341787 hasRelatedWork W2029249305 @default.
- W3125341787 hasRelatedWork W2105769806 @default.
- W3125341787 hasRelatedWork W2115571026 @default.
- W3125341787 hasRelatedWork W2144043954 @default.
- W3125341787 hasRelatedWork W2511137960 @default.
- W3125341787 hasRelatedWork W2604231787 @default.
- W3125341787 hasRelatedWork W2610014769 @default.
- W3125341787 hasRelatedWork W2687972263 @default.
- W3125341787 hasRelatedWork W2895616727 @default.
- W3125341787 hasRelatedWork W3214088465 @default.
- W3125341787 hasVolume "148" @default.
- W3125341787 isParatext "false" @default.
- W3125341787 isRetracted "false" @default.
- W3125341787 magId "3125341787" @default.
- W3125341787 workType "article" @default.