Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125351044> ?p ?o ?g. }
- W3125351044 endingPage "157" @default.
- W3125351044 startingPage "143" @default.
- W3125351044 abstract "Background: Amyloid-β (Aβ) evaluation in amnestic mild cognitive impairment (aMCI) patients is important for predicting conversion to Alzheimer’s disease. However, Aβ evaluation through Aβ positron emission tomography (PET) is limited due to high cost and safety issues. Objective: We therefore aimed to develop and validate prediction models of Aβ positivity for aMCI using optimal interpretable machine learning (ML) approaches utilizing multimodal markers. Methods: We recruited 529 aMCI patients from multiple centers who underwent Aβ PET. We trained ML algorithms using a training cohort (324 aMCI from Samsung medical center) with two-phase modelling: model 1 included age, gender, education, diabetes, hypertension, apolipoprotein E genotype, and neuropsychological test scores; model 2 included the same variables as model 1 with additional MRI features. We used four-fold cross-validation during the modelling and evaluated the models on an external validation cohort (187 aMCI from the other centers). Results: Model 1 showed good accuracy (area under the receiver operating characteristic curve [AUROC] 0.837) in cross-validation, and fair accuracy (AUROC 0.765) in external validation. Model 2 led to improvement in the prediction performance with good accuracy (AUROC 0.892) in cross validation compared to model 1. Apolipoprotein E genotype, delayed recall task scores, and interaction between cortical thickness in the temporal region and hippocampal volume were the most important predictors of Aβ positivity. Conclusion: Our results suggest that ML models are effective in predicting Aβ positivity at the individual level and could help the biomarker-guided diagnosis of prodromal AD." @default.
- W3125351044 created "2021-02-01" @default.
- W3125351044 creator A5002165527 @default.
- W3125351044 creator A5009093967 @default.
- W3125351044 creator A5022276770 @default.
- W3125351044 creator A5022350068 @default.
- W3125351044 creator A5023107984 @default.
- W3125351044 creator A5023911572 @default.
- W3125351044 creator A5060072983 @default.
- W3125351044 creator A5062304322 @default.
- W3125351044 creator A5072413175 @default.
- W3125351044 creator A5073162686 @default.
- W3125351044 creator A5081007211 @default.
- W3125351044 creator A5083476138 @default.
- W3125351044 date "2021-03-09" @default.
- W3125351044 modified "2023-10-10" @default.
- W3125351044 title "Machine Learning for the Prediction of Amyloid Positivity in Amnestic Mild Cognitive Impairment" @default.
- W3125351044 cites W1146642300 @default.
- W3125351044 cites W128780816 @default.
- W3125351044 cites W1498517701 @default.
- W3125351044 cites W1678356000 @default.
- W3125351044 cites W1921733975 @default.
- W3125351044 cites W1977131470 @default.
- W3125351044 cites W1980283223 @default.
- W3125351044 cites W1980371155 @default.
- W3125351044 cites W1982146721 @default.
- W3125351044 cites W2015151082 @default.
- W3125351044 cites W2040895929 @default.
- W3125351044 cites W2046601821 @default.
- W3125351044 cites W2057445904 @default.
- W3125351044 cites W2057765075 @default.
- W3125351044 cites W2065338300 @default.
- W3125351044 cites W2071881327 @default.
- W3125351044 cites W2073241381 @default.
- W3125351044 cites W2084164487 @default.
- W3125351044 cites W2087924155 @default.
- W3125351044 cites W2091931051 @default.
- W3125351044 cites W2094196773 @default.
- W3125351044 cites W2101310738 @default.
- W3125351044 cites W2111844615 @default.
- W3125351044 cites W2119910794 @default.
- W3125351044 cites W2124006321 @default.
- W3125351044 cites W2127384340 @default.
- W3125351044 cites W2128091975 @default.
- W3125351044 cites W2131339155 @default.
- W3125351044 cites W2136288391 @default.
- W3125351044 cites W2141796362 @default.
- W3125351044 cites W2151664809 @default.
- W3125351044 cites W2151765069 @default.
- W3125351044 cites W2157110881 @default.
- W3125351044 cites W2157848968 @default.
- W3125351044 cites W2159122349 @default.
- W3125351044 cites W2159123476 @default.
- W3125351044 cites W2161913873 @default.
- W3125351044 cites W2166939267 @default.
- W3125351044 cites W2171808809 @default.
- W3125351044 cites W2173280183 @default.
- W3125351044 cites W2175730819 @default.
- W3125351044 cites W2182872712 @default.
- W3125351044 cites W2305293438 @default.
- W3125351044 cites W2325727788 @default.
- W3125351044 cites W2328176404 @default.
- W3125351044 cites W2461910070 @default.
- W3125351044 cites W2463439240 @default.
- W3125351044 cites W2475392251 @default.
- W3125351044 cites W2487770199 @default.
- W3125351044 cites W2564633427 @default.
- W3125351044 cites W2582524520 @default.
- W3125351044 cites W2613800048 @default.
- W3125351044 cites W2706069792 @default.
- W3125351044 cites W2785757836 @default.
- W3125351044 cites W2787894218 @default.
- W3125351044 cites W2807086960 @default.
- W3125351044 cites W2807444804 @default.
- W3125351044 cites W2884775595 @default.
- W3125351044 cites W2895229741 @default.
- W3125351044 cites W2911487980 @default.
- W3125351044 cites W2911964244 @default.
- W3125351044 cites W2920957757 @default.
- W3125351044 cites W2943828894 @default.
- W3125351044 cites W2945700112 @default.
- W3125351044 cites W2982573331 @default.
- W3125351044 cites W2997795833 @default.
- W3125351044 cites W3004127313 @default.
- W3125351044 cites W3018431352 @default.
- W3125351044 cites W3095487047 @default.
- W3125351044 cites W3103553971 @default.
- W3125351044 cites W4212883601 @default.
- W3125351044 cites W4239510810 @default.
- W3125351044 doi "https://doi.org/10.3233/jad-201092" @default.
- W3125351044 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33523003" @default.
- W3125351044 hasPublicationYear "2021" @default.
- W3125351044 type Work @default.
- W3125351044 sameAs 3125351044 @default.
- W3125351044 citedByCount "6" @default.
- W3125351044 countsByYear W31253510442021 @default.
- W3125351044 countsByYear W31253510442023 @default.
- W3125351044 crossrefType "journal-article" @default.