Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125360608> ?p ?o ?g. }
- W3125360608 endingPage "393" @default.
- W3125360608 startingPage "371" @default.
- W3125360608 abstract "We propose a parametric state space model of asset return volatility with an accompanying estimation and forecasting framework that allows for ARFIMA dynamics, random level shifts and measurement errors. The Kalman filter is used to construct the state-augmented likelihood function and subsequently to generate forecasts, which are mean and path-corrected. We apply our model to eight daily volatility series constructed from both high-frequency and daily returns. Full sample parameter estimates reveal that random level shifts are present in all series. Genuine long memory is present in most high-frequency measures of volatility, whereas there is little remaining dynamics in the volatility measures constructed using daily returns. From extensive forecast evaluations, we find that our ARFIMA model with random level shifts consistently belongs to the 10% Model Confidence Set across a variety of forecast horizons, asset classes and volatility measures. The gains in forecast accuracy can be very pronounced, espe..." @default.
- W3125360608 created "2021-02-01" @default.
- W3125360608 creator A5017053425 @default.
- W3125360608 creator A5017831058 @default.
- W3125360608 date "2017-07-12" @default.
- W3125360608 modified "2023-10-17" @default.
- W3125360608 title "Combining long memory and level shifts in modelling and forecasting the volatility of asset returns" @default.
- W3125360608 cites W160896187 @default.
- W3125360608 cites W1919448723 @default.
- W3125360608 cites W1963787328 @default.
- W3125360608 cites W1967985636 @default.
- W3125360608 cites W1970102186 @default.
- W3125360608 cites W1970874681 @default.
- W3125360608 cites W1977289659 @default.
- W3125360608 cites W1979575715 @default.
- W3125360608 cites W1982879133 @default.
- W3125360608 cites W1983818306 @default.
- W3125360608 cites W1986376816 @default.
- W3125360608 cites W1997245915 @default.
- W3125360608 cites W1998667138 @default.
- W3125360608 cites W2014521320 @default.
- W3125360608 cites W2019202816 @default.
- W3125360608 cites W2020850080 @default.
- W3125360608 cites W2020944421 @default.
- W3125360608 cites W2034161641 @default.
- W3125360608 cites W2037002257 @default.
- W3125360608 cites W2041402087 @default.
- W3125360608 cites W2042536367 @default.
- W3125360608 cites W2045611107 @default.
- W3125360608 cites W2048211164 @default.
- W3125360608 cites W2055781590 @default.
- W3125360608 cites W2098060360 @default.
- W3125360608 cites W2098813829 @default.
- W3125360608 cites W2116294798 @default.
- W3125360608 cites W2116388354 @default.
- W3125360608 cites W2125536334 @default.
- W3125360608 cites W2132090039 @default.
- W3125360608 cites W2146134639 @default.
- W3125360608 cites W2150531337 @default.
- W3125360608 cites W2154780983 @default.
- W3125360608 cites W2167162925 @default.
- W3125360608 cites W2188804318 @default.
- W3125360608 cites W2225574294 @default.
- W3125360608 cites W2282262762 @default.
- W3125360608 cites W2560498944 @default.
- W3125360608 cites W3021318637 @default.
- W3125360608 cites W3121364726 @default.
- W3125360608 cites W3122207805 @default.
- W3125360608 cites W3122669972 @default.
- W3125360608 cites W3122719920 @default.
- W3125360608 cites W3123662560 @default.
- W3125360608 cites W3123985237 @default.
- W3125360608 cites W3124026849 @default.
- W3125360608 cites W3124179420 @default.
- W3125360608 cites W3124354217 @default.
- W3125360608 cites W3124955081 @default.
- W3125360608 cites W3125412410 @default.
- W3125360608 cites W3125987794 @default.
- W3125360608 cites W3126027153 @default.
- W3125360608 cites W4232028136 @default.
- W3125360608 cites W4241115065 @default.
- W3125360608 cites W4242671632 @default.
- W3125360608 cites W4292963524 @default.
- W3125360608 doi "https://doi.org/10.1080/14697688.2017.1329591" @default.
- W3125360608 hasPublicationYear "2017" @default.
- W3125360608 type Work @default.
- W3125360608 sameAs 3125360608 @default.
- W3125360608 citedByCount "16" @default.
- W3125360608 countsByYear W31253606082015 @default.
- W3125360608 countsByYear W31253606082017 @default.
- W3125360608 countsByYear W31253606082018 @default.
- W3125360608 countsByYear W31253606082019 @default.
- W3125360608 countsByYear W31253606082020 @default.
- W3125360608 countsByYear W31253606082021 @default.
- W3125360608 countsByYear W31253606082022 @default.
- W3125360608 countsByYear W31253606082023 @default.
- W3125360608 crossrefType "journal-article" @default.
- W3125360608 hasAuthorship W3125360608A5017053425 @default.
- W3125360608 hasAuthorship W3125360608A5017831058 @default.
- W3125360608 hasBestOaLocation W31253606082 @default.
- W3125360608 hasConcept C106159729 @default.
- W3125360608 hasConcept C149782125 @default.
- W3125360608 hasConcept C162324750 @default.
- W3125360608 hasConcept C2986394398 @default.
- W3125360608 hasConcept C91602232 @default.
- W3125360608 hasConceptScore W3125360608C106159729 @default.
- W3125360608 hasConceptScore W3125360608C149782125 @default.
- W3125360608 hasConceptScore W3125360608C162324750 @default.
- W3125360608 hasConceptScore W3125360608C2986394398 @default.
- W3125360608 hasConceptScore W3125360608C91602232 @default.
- W3125360608 hasIssue "3" @default.
- W3125360608 hasLocation W31253606081 @default.
- W3125360608 hasLocation W31253606082 @default.
- W3125360608 hasOpenAccess W3125360608 @default.
- W3125360608 hasPrimaryLocation W31253606081 @default.
- W3125360608 hasRelatedWork W1486020309 @default.
- W3125360608 hasRelatedWork W1569950097 @default.
- W3125360608 hasRelatedWork W1965436945 @default.