Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125402839> ?p ?o ?g. }
- W3125402839 abstract "Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer and it has the worst prognosis among all renal cancers. However, traditional radiological characteristics on computed tomography (CT) scans of ccRCC have been insufficient to predict the pathological grade of ccRCC before surgery.Patients with ccRCC were retrospectively enrolled into this study and were separated into two groups according to the World Health Organization (WHO)/International Society of Urological Pathology (ISUP) grading system, i.e., low-grade (Grade I and II) group and high-grade (Grade III and IV) group. Traditional CT radiological characteristics such as tumor size, pre- and post-enhancing CT densities were assessed. In addition, radiomic texture analysis based on the CT imaging of the ccRCC were also performed. A CT-based machine learning method combining the traditional radiological characteristics and radiomic features was used in the predictive modeling for differentiating the low-grade from the high-grade ccRCC. Model performance was evaluated with the receiver operating characteristic curve (ROC) analysis.A total of 264 patients with pathologically confirmed ccRCC were included in this study. In this cohort, 206 patients had the low-grade tumors and 58 had the high-grade tumors. The model built with traditional radiological characteristics achieved an area under the curve (AUC) of 0.9175 (95% CI: 0.8765-0.9585) and 0.8088 (95% CI: 0.7064-0.9113) in differentiating the low-grade from the high-grade ccRCC for the training cohort and the validation cohort respectively. The model built with the radiomic textural features yielded an AUC value of 0.8170 (95% CI: 0.7353-0.8987) and 0.8017 (95% CI: 0.6878-0.9157) for the training cohort and the validation cohort, respectively. The combined model integrating both the traditional radiological characteristics and the radiomic textural features achieved the highest efficacy, with an AUC of 0.9235 (95% CI: 0.8646-0.9824) and an AUC of 0.9099 (95% CI: 0.8324-0.9873) for the training cohort and validation cohort, respectively.We developed a machine learning radiomic model achieving a satisfying performance in differentiating the low-grade from the high-grade ccRCC. Our study presented a potentially useful non-invasive imaging-focused method to predict the pathological grade of renal cancers prior to surgery." @default.
- W3125402839 created "2021-02-01" @default.
- W3125402839 creator A5003551877 @default.
- W3125402839 creator A5008392343 @default.
- W3125402839 creator A5010507920 @default.
- W3125402839 creator A5025633927 @default.
- W3125402839 creator A5029850794 @default.
- W3125402839 creator A5030742167 @default.
- W3125402839 creator A5036266050 @default.
- W3125402839 creator A5047591289 @default.
- W3125402839 creator A5051492043 @default.
- W3125402839 creator A5051581366 @default.
- W3125402839 creator A5063364342 @default.
- W3125402839 creator A5071690182 @default.
- W3125402839 creator A5080516455 @default.
- W3125402839 creator A5080779362 @default.
- W3125402839 creator A5082454113 @default.
- W3125402839 creator A5085862331 @default.
- W3125402839 date "2021-01-27" @default.
- W3125402839 modified "2023-10-15" @default.
- W3125402839 title "Computed Tomography Radiomics for Predicting Pathological Grade of Renal Cell Carcinoma" @default.
- W3125402839 cites W1969878537 @default.
- W3125402839 cites W1971453924 @default.
- W3125402839 cites W1983086285 @default.
- W3125402839 cites W1991408439 @default.
- W3125402839 cites W1993772088 @default.
- W3125402839 cites W2007495351 @default.
- W3125402839 cites W2013321025 @default.
- W3125402839 cites W2039870513 @default.
- W3125402839 cites W2057567734 @default.
- W3125402839 cites W2068427213 @default.
- W3125402839 cites W2116529798 @default.
- W3125402839 cites W2128739912 @default.
- W3125402839 cites W2164317031 @default.
- W3125402839 cites W2174661749 @default.
- W3125402839 cites W2272984102 @default.
- W3125402839 cites W2284518822 @default.
- W3125402839 cites W2405290919 @default.
- W3125402839 cites W2524688517 @default.
- W3125402839 cites W2564727553 @default.
- W3125402839 cites W2567091648 @default.
- W3125402839 cites W2597334931 @default.
- W3125402839 cites W2606456516 @default.
- W3125402839 cites W2734604039 @default.
- W3125402839 cites W2738772248 @default.
- W3125402839 cites W2755044641 @default.
- W3125402839 cites W2763355946 @default.
- W3125402839 cites W2767057259 @default.
- W3125402839 cites W2770027889 @default.
- W3125402839 cites W2781525129 @default.
- W3125402839 cites W2790386373 @default.
- W3125402839 cites W2796688018 @default.
- W3125402839 cites W2894618376 @default.
- W3125402839 cites W2935065396 @default.
- W3125402839 cites W2946086971 @default.
- W3125402839 cites W2948807949 @default.
- W3125402839 cites W2983452901 @default.
- W3125402839 cites W3004159775 @default.
- W3125402839 cites W3013894086 @default.
- W3125402839 cites W3043189874 @default.
- W3125402839 cites W3044762312 @default.
- W3125402839 cites W3080963454 @default.
- W3125402839 doi "https://doi.org/10.3389/fonc.2020.570396" @default.
- W3125402839 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7873602" @default.
- W3125402839 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33585193" @default.
- W3125402839 hasPublicationYear "2021" @default.
- W3125402839 type Work @default.
- W3125402839 sameAs 3125402839 @default.
- W3125402839 citedByCount "15" @default.
- W3125402839 countsByYear W31254028392021 @default.
- W3125402839 countsByYear W31254028392022 @default.
- W3125402839 countsByYear W31254028392023 @default.
- W3125402839 crossrefType "journal-article" @default.
- W3125402839 hasAuthorship W3125402839A5003551877 @default.
- W3125402839 hasAuthorship W3125402839A5008392343 @default.
- W3125402839 hasAuthorship W3125402839A5010507920 @default.
- W3125402839 hasAuthorship W3125402839A5025633927 @default.
- W3125402839 hasAuthorship W3125402839A5029850794 @default.
- W3125402839 hasAuthorship W3125402839A5030742167 @default.
- W3125402839 hasAuthorship W3125402839A5036266050 @default.
- W3125402839 hasAuthorship W3125402839A5047591289 @default.
- W3125402839 hasAuthorship W3125402839A5051492043 @default.
- W3125402839 hasAuthorship W3125402839A5051581366 @default.
- W3125402839 hasAuthorship W3125402839A5063364342 @default.
- W3125402839 hasAuthorship W3125402839A5071690182 @default.
- W3125402839 hasAuthorship W3125402839A5080516455 @default.
- W3125402839 hasAuthorship W3125402839A5080779362 @default.
- W3125402839 hasAuthorship W3125402839A5082454113 @default.
- W3125402839 hasAuthorship W3125402839A5085862331 @default.
- W3125402839 hasBestOaLocation W31254028391 @default.
- W3125402839 hasConcept C126322002 @default.
- W3125402839 hasConcept C126838900 @default.
- W3125402839 hasConcept C127413603 @default.
- W3125402839 hasConcept C143998085 @default.
- W3125402839 hasConcept C147176958 @default.
- W3125402839 hasConcept C190892606 @default.
- W3125402839 hasConcept C207886595 @default.
- W3125402839 hasConcept C2777286243 @default.
- W3125402839 hasConcept C2777472916 @default.
- W3125402839 hasConcept C2778559731 @default.