Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125427056> ?p ?o ?g. }
- W3125427056 endingPage "545" @default.
- W3125427056 startingPage "532" @default.
- W3125427056 abstract "ConspectusThe variability of chemical bonding in open-shell transition-metal complexes not only motivates their study as functional materials and catalysts but also challenges conventional computational modeling tools. Here, tailoring ligand chemistry can alter preferred spin or oxidation states as well as electronic structure properties and reactivity, creating vast regions of chemical space to explore when designing new materials atom by atom. Although first-principles density functional theory (DFT) remains the workhorse of computational chemistry in mechanism deduction and property prediction, it is of limited use here. DFT is both far too computationally costly for widespread exploration of transition-metal chemical space and also prone to inaccuracies that limit its predictive performance for localized d electrons in transition-metal complexes. These challenges starkly contrast with the well-trodden regions of small-organic-molecule chemical space, where the analytical forms of molecular mechanics force fields and semiempirical theories have for decades accelerated the discovery of new molecules, accurate DFT functional performance has been demonstrated, and gold-standard methods from correlated wavefunction theory can predict experimental results to chemical accuracy.The combined promise of transition-metal chemical space exploration and lack of established tools has mandated a distinct approach. In this Account, we outline the path we charted in exploration of transition-metal chemical space starting from the first machine learning (ML) models (i.e., artificial neural network and kernel ridge regression) and representations for the prediction of open-shell transition-metal complex properties. The distinct importance of the immediate coordination environment of the metal center as well as the lack of low-level methods to accurately predict structural properties in this coordination environment first motivated and then benefited from these ML models and representations. Once developed, the recipe for prediction of geometric, spin state, and redox potential properties was straightforwardly extended to a diverse range of other properties, including in catalysis, computational “feasibility”, and the gas separation properties of periodic metal–organic frameworks. Interpretation of selected features most important for model prediction revealed new ways to encapsulate design rules and confirmed that models were robustly mapping essential structure–property relationships. Encountering the special challenge of ensuring that good model performance could generalize to new discovery targets motivated investigation of how to best carry out model uncertainty quantification. Distance-based approaches, whether in model latent space or in carefully engineered feature space, provided intuitive measures of the domain of applicability. With all of these pieces together, ML can be harnessed as an engine to tackle the large-scale exploration of transition-metal chemical space needed to satisfy multiple objectives using efficient global optimization methods. In practical terms, bringing these artificial intelligence tools to bear on the problems of transition-metal chemical space exploration has resulted in ML-model assessments of large, multimillion compound spaces in minutes and validated new design leads in weeks instead of decades." @default.
- W3125427056 created "2021-02-01" @default.
- W3125427056 creator A5029457626 @default.
- W3125427056 creator A5030485362 @default.
- W3125427056 creator A5038652876 @default.
- W3125427056 creator A5050671822 @default.
- W3125427056 creator A5064662152 @default.
- W3125427056 date "2021-01-22" @default.
- W3125427056 modified "2023-10-16" @default.
- W3125427056 title "Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design" @default.
- W3125427056 cites W1593284678 @default.
- W3125427056 cites W1601357266 @default.
- W3125427056 cites W1935183390 @default.
- W3125427056 cites W1967024600 @default.
- W3125427056 cites W1970369518 @default.
- W3125427056 cites W1977160384 @default.
- W3125427056 cites W1984705693 @default.
- W3125427056 cites W1991143494 @default.
- W3125427056 cites W2020150396 @default.
- W3125427056 cites W2023744963 @default.
- W3125427056 cites W2030971064 @default.
- W3125427056 cites W2039337840 @default.
- W3125427056 cites W2042985728 @default.
- W3125427056 cites W2080635178 @default.
- W3125427056 cites W2083541359 @default.
- W3125427056 cites W2090901280 @default.
- W3125427056 cites W2093229042 @default.
- W3125427056 cites W2098366232 @default.
- W3125427056 cites W2098629435 @default.
- W3125427056 cites W2100716186 @default.
- W3125427056 cites W2102807619 @default.
- W3125427056 cites W2104489082 @default.
- W3125427056 cites W2110791536 @default.
- W3125427056 cites W2114704115 @default.
- W3125427056 cites W2123265733 @default.
- W3125427056 cites W2314360802 @default.
- W3125427056 cites W2319902168 @default.
- W3125427056 cites W2337110853 @default.
- W3125427056 cites W2497944204 @default.
- W3125427056 cites W2541404351 @default.
- W3125427056 cites W2562478482 @default.
- W3125427056 cites W2565212977 @default.
- W3125427056 cites W2604906708 @default.
- W3125427056 cites W2605627947 @default.
- W3125427056 cites W2605925159 @default.
- W3125427056 cites W2606937713 @default.
- W3125427056 cites W2749580687 @default.
- W3125427056 cites W2766362701 @default.
- W3125427056 cites W2782634521 @default.
- W3125427056 cites W2786308452 @default.
- W3125427056 cites W2792348590 @default.
- W3125427056 cites W2800168263 @default.
- W3125427056 cites W2888436131 @default.
- W3125427056 cites W2890019192 @default.
- W3125427056 cites W2890097032 @default.
- W3125427056 cites W2892094491 @default.
- W3125427056 cites W2892439819 @default.
- W3125427056 cites W2898972408 @default.
- W3125427056 cites W2917126206 @default.
- W3125427056 cites W2920327541 @default.
- W3125427056 cites W2921706278 @default.
- W3125427056 cites W2943486344 @default.
- W3125427056 cites W2943843211 @default.
- W3125427056 cites W2953523625 @default.
- W3125427056 cites W2959623824 @default.
- W3125427056 cites W2963312448 @default.
- W3125427056 cites W2964884706 @default.
- W3125427056 cites W2966835197 @default.
- W3125427056 cites W2972597827 @default.
- W3125427056 cites W2983028326 @default.
- W3125427056 cites W3000086210 @default.
- W3125427056 cites W3012320417 @default.
- W3125427056 cites W3013702686 @default.
- W3125427056 cites W3048908832 @default.
- W3125427056 cites W3081555856 @default.
- W3125427056 cites W3082636798 @default.
- W3125427056 cites W3098269892 @default.
- W3125427056 cites W3099469678 @default.
- W3125427056 cites W3099937095 @default.
- W3125427056 doi "https://doi.org/10.1021/acs.accounts.0c00686" @default.
- W3125427056 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33480674" @default.
- W3125427056 hasPublicationYear "2021" @default.
- W3125427056 type Work @default.
- W3125427056 sameAs 3125427056 @default.
- W3125427056 citedByCount "26" @default.
- W3125427056 countsByYear W31254270562021 @default.
- W3125427056 countsByYear W31254270562022 @default.
- W3125427056 countsByYear W31254270562023 @default.
- W3125427056 crossrefType "journal-article" @default.
- W3125427056 hasAuthorship W3125427056A5029457626 @default.
- W3125427056 hasAuthorship W3125427056A5030485362 @default.
- W3125427056 hasAuthorship W3125427056A5038652876 @default.
- W3125427056 hasAuthorship W3125427056A5050671822 @default.
- W3125427056 hasAuthorship W3125427056A5064662152 @default.
- W3125427056 hasBestOaLocation W31254270562 @default.
- W3125427056 hasConcept C106773901 @default.
- W3125427056 hasConcept C111919701 @default.
- W3125427056 hasConcept C147597530 @default.