Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125449488> ?p ?o ?g. }
- W3125449488 endingPage "339" @default.
- W3125449488 startingPage "327" @default.
- W3125449488 abstract "Deep learning is providing very positive results in areas related to conversational interfaces, such as speech recognition, but its potential benefit for dialog management has still not been fully studied. In this paper, we perform an assessment of different configurations for deep-learned dialog management with three dialog corpora from different application domains and varying in size, dimensionality and possible system responses. Our results have allowed us to identify several aspects that can have an impact on accuracy, including the approaches used for feature extraction, input representation, context consideration and the hyper-parameters of the deep neural networks employed." @default.
- W3125449488 created "2021-02-01" @default.
- W3125449488 creator A5019802248 @default.
- W3125449488 creator A5057526407 @default.
- W3125449488 creator A5059583924 @default.
- W3125449488 creator A5075840120 @default.
- W3125449488 creator A5080094373 @default.
- W3125449488 date "2021-06-01" @default.
- W3125449488 modified "2023-10-17" @default.
- W3125449488 title "An empirical assessment of deep learning approaches to task-oriented dialog management" @default.
- W3125449488 cites W1498436455 @default.
- W3125449488 cites W1600735390 @default.
- W3125449488 cites W1681299129 @default.
- W3125449488 cites W188303246 @default.
- W3125449488 cites W190230800 @default.
- W3125449488 cites W1947758080 @default.
- W3125449488 cites W194972339 @default.
- W3125449488 cites W1963612627 @default.
- W3125449488 cites W1963750509 @default.
- W3125449488 cites W1979299372 @default.
- W3125449488 cites W2026970481 @default.
- W3125449488 cites W2031856158 @default.
- W3125449488 cites W2064675550 @default.
- W3125449488 cites W2074056782 @default.
- W3125449488 cites W2074948189 @default.
- W3125449488 cites W2075085977 @default.
- W3125449488 cites W2076063813 @default.
- W3125449488 cites W2091304744 @default.
- W3125449488 cites W2095977914 @default.
- W3125449488 cites W2104308387 @default.
- W3125449488 cites W2104544334 @default.
- W3125449488 cites W2111550420 @default.
- W3125449488 cites W2115101920 @default.
- W3125449488 cites W2124895976 @default.
- W3125449488 cites W2128965063 @default.
- W3125449488 cites W2132997613 @default.
- W3125449488 cites W2136922672 @default.
- W3125449488 cites W2137496706 @default.
- W3125449488 cites W2147768505 @default.
- W3125449488 cites W2160219061 @default.
- W3125449488 cites W2160815625 @default.
- W3125449488 cites W2167011222 @default.
- W3125449488 cites W2168490009 @default.
- W3125449488 cites W2194775991 @default.
- W3125449488 cites W2284443313 @default.
- W3125449488 cites W2394932179 @default.
- W3125449488 cites W2404921503 @default.
- W3125449488 cites W2408200822 @default.
- W3125449488 cites W2520176975 @default.
- W3125449488 cites W2561293850 @default.
- W3125449488 cites W2565516711 @default.
- W3125449488 cites W2587088898 @default.
- W3125449488 cites W2792533596 @default.
- W3125449488 cites W2807023564 @default.
- W3125449488 cites W2912215636 @default.
- W3125449488 cites W2919115771 @default.
- W3125449488 cites W2921671634 @default.
- W3125449488 cites W2963369167 @default.
- W3125449488 cites W2963788376 @default.
- W3125449488 cites W2964101860 @default.
- W3125449488 doi "https://doi.org/10.1016/j.neucom.2020.01.126" @default.
- W3125449488 hasPublicationYear "2021" @default.
- W3125449488 type Work @default.
- W3125449488 sameAs 3125449488 @default.
- W3125449488 citedByCount "4" @default.
- W3125449488 countsByYear W31254494882021 @default.
- W3125449488 countsByYear W31254494882022 @default.
- W3125449488 crossrefType "journal-article" @default.
- W3125449488 hasAuthorship W3125449488A5019802248 @default.
- W3125449488 hasAuthorship W3125449488A5057526407 @default.
- W3125449488 hasAuthorship W3125449488A5059583924 @default.
- W3125449488 hasAuthorship W3125449488A5075840120 @default.
- W3125449488 hasAuthorship W3125449488A5080094373 @default.
- W3125449488 hasBestOaLocation W31254494882 @default.
- W3125449488 hasConcept C108583219 @default.
- W3125449488 hasConcept C111030470 @default.
- W3125449488 hasConcept C119857082 @default.
- W3125449488 hasConcept C136764020 @default.
- W3125449488 hasConcept C138885662 @default.
- W3125449488 hasConcept C151730666 @default.
- W3125449488 hasConcept C154945302 @default.
- W3125449488 hasConcept C162324750 @default.
- W3125449488 hasConcept C173853756 @default.
- W3125449488 hasConcept C17744445 @default.
- W3125449488 hasConcept C187736073 @default.
- W3125449488 hasConcept C199539241 @default.
- W3125449488 hasConcept C204321447 @default.
- W3125449488 hasConcept C2776359362 @default.
- W3125449488 hasConcept C2776401178 @default.
- W3125449488 hasConcept C2779343474 @default.
- W3125449488 hasConcept C2780451532 @default.
- W3125449488 hasConcept C41008148 @default.
- W3125449488 hasConcept C41895202 @default.
- W3125449488 hasConcept C86803240 @default.
- W3125449488 hasConcept C94625758 @default.
- W3125449488 hasConceptScore W3125449488C108583219 @default.
- W3125449488 hasConceptScore W3125449488C111030470 @default.
- W3125449488 hasConceptScore W3125449488C119857082 @default.