Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125496003> ?p ?o ?g. }
- W3125496003 endingPage "985" @default.
- W3125496003 startingPage "985" @default.
- W3125496003 abstract "In this work, the best size for late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) images in the training dataset was determined to optimize deep learning training outcomes. Non-extra pixel and extra pixel interpolation algorithms were used to determine the new size of the LGE-MRI images. A novel strategy was introduced to handle interpolation masks and remove extra class labels in interpolated ground truth (GT) segmentation masks. The expectation maximization, weighted intensity, a priori information (EWA) algorithm was used for the quantification of myocardial infarction (MI) in automatically segmented LGE-MRI images. Arbitrary threshold, comparison of the sums, and sums of differences are methods used to estimate the relationship between semi-automatic or manual and fully automated quantification of myocardial infarction (MI) results. The relationship between semi-automatic and fully automated quantification of MI results was found to be closer in the case of bigger LGE MRI images (55.5% closer to manual results) than in the case of smaller LGE MRI images (22.2% closer to manual results)." @default.
- W3125496003 created "2021-02-01" @default.
- W3125496003 creator A5070608034 @default.
- W3125496003 date "2023-02-16" @default.
- W3125496003 modified "2023-09-30" @default.
- W3125496003 title "Effects of Image Size on Deep Learning" @default.
- W3125496003 cites W1972544340 @default.
- W3125496003 cites W1988934276 @default.
- W3125496003 cites W2015513598 @default.
- W3125496003 cites W2033849769 @default.
- W3125496003 cites W2076063813 @default.
- W3125496003 cites W2076608722 @default.
- W3125496003 cites W2091695913 @default.
- W3125496003 cites W2118386984 @default.
- W3125496003 cites W2141125852 @default.
- W3125496003 cites W2163922914 @default.
- W3125496003 cites W2345556308 @default.
- W3125496003 cites W2499316477 @default.
- W3125496003 cites W2551940739 @default.
- W3125496003 cites W2592929672 @default.
- W3125496003 cites W2739002080 @default.
- W3125496003 cites W2797711954 @default.
- W3125496003 cites W2862127989 @default.
- W3125496003 cites W2899262539 @default.
- W3125496003 cites W2916412824 @default.
- W3125496003 cites W2919115771 @default.
- W3125496003 cites W2928133111 @default.
- W3125496003 cites W2944712585 @default.
- W3125496003 cites W2963881378 @default.
- W3125496003 cites W2976771530 @default.
- W3125496003 cites W2989179809 @default.
- W3125496003 cites W3023192521 @default.
- W3125496003 cites W3092136821 @default.
- W3125496003 cites W3098515398 @default.
- W3125496003 cites W3100816363 @default.
- W3125496003 cites W3124178045 @default.
- W3125496003 cites W3171424841 @default.
- W3125496003 cites W3186492510 @default.
- W3125496003 cites W3207318328 @default.
- W3125496003 cites W3207847294 @default.
- W3125496003 cites W4205209997 @default.
- W3125496003 cites W4206370072 @default.
- W3125496003 cites W4210588087 @default.
- W3125496003 cites W4242731265 @default.
- W3125496003 doi "https://doi.org/10.3390/electronics12040985" @default.
- W3125496003 hasPublicationYear "2023" @default.
- W3125496003 type Work @default.
- W3125496003 sameAs 3125496003 @default.
- W3125496003 citedByCount "13" @default.
- W3125496003 countsByYear W31254960032023 @default.
- W3125496003 crossrefType "journal-article" @default.
- W3125496003 hasAuthorship W3125496003A5070608034 @default.
- W3125496003 hasBestOaLocation W31254960031 @default.
- W3125496003 hasConcept C111472728 @default.
- W3125496003 hasConcept C115961682 @default.
- W3125496003 hasConcept C124504099 @default.
- W3125496003 hasConcept C126838900 @default.
- W3125496003 hasConcept C137800194 @default.
- W3125496003 hasConcept C138885662 @default.
- W3125496003 hasConcept C143409427 @default.
- W3125496003 hasConcept C146849305 @default.
- W3125496003 hasConcept C153180895 @default.
- W3125496003 hasConcept C154945302 @default.
- W3125496003 hasConcept C160633673 @default.
- W3125496003 hasConcept C31972630 @default.
- W3125496003 hasConcept C41008148 @default.
- W3125496003 hasConcept C71924100 @default.
- W3125496003 hasConcept C75553542 @default.
- W3125496003 hasConcept C89600930 @default.
- W3125496003 hasConceptScore W3125496003C111472728 @default.
- W3125496003 hasConceptScore W3125496003C115961682 @default.
- W3125496003 hasConceptScore W3125496003C124504099 @default.
- W3125496003 hasConceptScore W3125496003C126838900 @default.
- W3125496003 hasConceptScore W3125496003C137800194 @default.
- W3125496003 hasConceptScore W3125496003C138885662 @default.
- W3125496003 hasConceptScore W3125496003C143409427 @default.
- W3125496003 hasConceptScore W3125496003C146849305 @default.
- W3125496003 hasConceptScore W3125496003C153180895 @default.
- W3125496003 hasConceptScore W3125496003C154945302 @default.
- W3125496003 hasConceptScore W3125496003C160633673 @default.
- W3125496003 hasConceptScore W3125496003C31972630 @default.
- W3125496003 hasConceptScore W3125496003C41008148 @default.
- W3125496003 hasConceptScore W3125496003C71924100 @default.
- W3125496003 hasConceptScore W3125496003C75553542 @default.
- W3125496003 hasConceptScore W3125496003C89600930 @default.
- W3125496003 hasIssue "4" @default.
- W3125496003 hasLocation W31254960031 @default.
- W3125496003 hasLocation W31254960032 @default.
- W3125496003 hasLocation W31254960033 @default.
- W3125496003 hasOpenAccess W3125496003 @default.
- W3125496003 hasPrimaryLocation W31254960031 @default.
- W3125496003 hasRelatedWork W121273120 @default.
- W3125496003 hasRelatedWork W158826679 @default.
- W3125496003 hasRelatedWork W1669643531 @default.
- W3125496003 hasRelatedWork W2005437358 @default.
- W3125496003 hasRelatedWork W2008656436 @default.
- W3125496003 hasRelatedWork W2023558673 @default.
- W3125496003 hasRelatedWork W2134924024 @default.