Matches in SemOpenAlex for { <https://semopenalex.org/work/W3125514172> ?p ?o ?g. }
- W3125514172 endingPage "256" @default.
- W3125514172 startingPage "256" @default.
- W3125514172 abstract "Accurate estimation of pan evaporation (Ep) is vital for the development of water resources and agricultural water management, especially in arid and semi-arid regions where it is restricted to set up the facilities and measure pan evaporation accurately and consistently. Besides, using pan evaporation estimating models and pan coefficient (kp) models is a classic method to assess the reference evapotranspiration (ET0) which is indispensable to crop growth, irrigation scheduling, and economic assessment. This study estimated the potential of a novel hybrid machine learning model Coupling Bat algorithm (Bat) and Gradient boosting with categorical features support (CatBoost) for estimating daily pan evaporation in arid and semi-arid regions of northwest China. Two other commonly used algorithms including random forest (RF) and original CatBoost (CB) were also applied for comparison. The daily meteorological data for 12 years (2006–2017) from 45 weather stations in arid and semi-arid areas of China, including minimum and maximum air temperature (Tmin, Tmax), relative humidity (RH), wind speed (U), and global solar radiation (Rs), were utilized to feed the three models for exploring the ability in predicting pan evaporation. The results revealed that the new developed Bat-CB model (RMSE = 0.859–2.227 mm·d−1; MAE = 0.540–1.328 mm·d−1; NSE = 0.625–0.894; MAPE = 0.162–0.328) was superior to RF and CB. In addition, CB (RMSE = 0.897–2.754 mm·d−1; MAE = 0.531–1.77 mm·d−1; NSE = 0.147–0.869; MAPE = 0.161–0.421) slightly outperformed RF (RMSE = 1.005–3.604 mm·d−1; MAE = 0.644–2.479 mm·d−1; NSE = −1.242–0.894; MAPE = 0.176–0.686) which had poor ability to operate the erratic changes of pan evaporation. Furthermore, the improvement of Bat-CB was presented more comprehensively and obviously in the seasonal and spatial performance compared to CB and RF. Overall, Bat-CB has high accuracy, robust stability, and huge potential for Ep estimation in arid and semi-arid regions of northwest China and the applications of findings in this study have equal significance for adjacent countries." @default.
- W3125514172 created "2021-02-01" @default.
- W3125514172 creator A5007456376 @default.
- W3125514172 creator A5046716720 @default.
- W3125514172 creator A5061220632 @default.
- W3125514172 creator A5069966398 @default.
- W3125514172 creator A5072183122 @default.
- W3125514172 creator A5075181623 @default.
- W3125514172 creator A5082386818 @default.
- W3125514172 date "2021-01-21" @default.
- W3125514172 modified "2023-10-01" @default.
- W3125514172 title "Estimating the Pan Evaporation in Northwest China by Coupling CatBoost with Bat Algorithm" @default.
- W3125514172 cites W1975940830 @default.
- W3125514172 cites W1985372952 @default.
- W3125514172 cites W2008855201 @default.
- W3125514172 cites W2010133458 @default.
- W3125514172 cites W2013355544 @default.
- W3125514172 cites W2039574924 @default.
- W3125514172 cites W2065902166 @default.
- W3125514172 cites W2082192822 @default.
- W3125514172 cites W2090637840 @default.
- W3125514172 cites W2152236704 @default.
- W3125514172 cites W2238249335 @default.
- W3125514172 cites W2260152510 @default.
- W3125514172 cites W2291534902 @default.
- W3125514172 cites W2536008880 @default.
- W3125514172 cites W2625183221 @default.
- W3125514172 cites W2767864371 @default.
- W3125514172 cites W2792986592 @default.
- W3125514172 cites W2808998311 @default.
- W3125514172 cites W2871832352 @default.
- W3125514172 cites W2882203834 @default.
- W3125514172 cites W2888508562 @default.
- W3125514172 cites W2893011787 @default.
- W3125514172 cites W2901004617 @default.
- W3125514172 cites W2908559660 @default.
- W3125514172 cites W2909206877 @default.
- W3125514172 cites W2911964244 @default.
- W3125514172 cites W2920425503 @default.
- W3125514172 cites W2924401448 @default.
- W3125514172 cites W2938880353 @default.
- W3125514172 cites W2942851257 @default.
- W3125514172 cites W2960137824 @default.
- W3125514172 cites W2972434026 @default.
- W3125514172 cites W2980395987 @default.
- W3125514172 cites W2981897990 @default.
- W3125514172 cites W2991192488 @default.
- W3125514172 cites W2997981891 @default.
- W3125514172 cites W2999579662 @default.
- W3125514172 cites W3001869580 @default.
- W3125514172 cites W3015611684 @default.
- W3125514172 cites W3023702284 @default.
- W3125514172 cites W3032512766 @default.
- W3125514172 cites W3033099458 @default.
- W3125514172 cites W3043532099 @default.
- W3125514172 cites W3082130549 @default.
- W3125514172 cites W836867855 @default.
- W3125514172 doi "https://doi.org/10.3390/w13030256" @default.
- W3125514172 hasPublicationYear "2021" @default.
- W3125514172 type Work @default.
- W3125514172 sameAs 3125514172 @default.
- W3125514172 citedByCount "20" @default.
- W3125514172 countsByYear W31255141722021 @default.
- W3125514172 countsByYear W31255141722022 @default.
- W3125514172 countsByYear W31255141722023 @default.
- W3125514172 crossrefType "journal-article" @default.
- W3125514172 hasAuthorship W3125514172A5007456376 @default.
- W3125514172 hasAuthorship W3125514172A5046716720 @default.
- W3125514172 hasAuthorship W3125514172A5061220632 @default.
- W3125514172 hasAuthorship W3125514172A5069966398 @default.
- W3125514172 hasAuthorship W3125514172A5072183122 @default.
- W3125514172 hasAuthorship W3125514172A5075181623 @default.
- W3125514172 hasAuthorship W3125514172A5082386818 @default.
- W3125514172 hasBestOaLocation W31255141721 @default.
- W3125514172 hasConcept C127313418 @default.
- W3125514172 hasConcept C150772632 @default.
- W3125514172 hasConcept C153294291 @default.
- W3125514172 hasConcept C159390177 @default.
- W3125514172 hasConcept C159750122 @default.
- W3125514172 hasConcept C161067210 @default.
- W3125514172 hasConcept C176783924 @default.
- W3125514172 hasConcept C18903297 @default.
- W3125514172 hasConcept C205649164 @default.
- W3125514172 hasConcept C23430798 @default.
- W3125514172 hasConcept C2777589951 @default.
- W3125514172 hasConcept C39432304 @default.
- W3125514172 hasConcept C61441594 @default.
- W3125514172 hasConcept C86803240 @default.
- W3125514172 hasConcept C88862950 @default.
- W3125514172 hasConcept C91586092 @default.
- W3125514172 hasConceptScore W3125514172C127313418 @default.
- W3125514172 hasConceptScore W3125514172C150772632 @default.
- W3125514172 hasConceptScore W3125514172C153294291 @default.
- W3125514172 hasConceptScore W3125514172C159390177 @default.
- W3125514172 hasConceptScore W3125514172C159750122 @default.
- W3125514172 hasConceptScore W3125514172C161067210 @default.
- W3125514172 hasConceptScore W3125514172C176783924 @default.
- W3125514172 hasConceptScore W3125514172C18903297 @default.